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We provide a short proof of the inequality (cf. Ben-Artzi and Klainerman 
[Regularity and decay of evolution equations, preprint] and Kato and Yajima 
[Rev. Math. Phys. 1 (1989), 4814961) 
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with explicit (essentially exact) values for C. (G 1992 Academic Press, Inc. 

Recently Ben-Artzi and Klainerman [l] and Kato and Yajima [S] have 
focused interest on the estimate 

I I, 11(1 +x2))“2 (1 -4)1’4ei’dUJ12dt<C IIU112, (1) 

a result that implies and extends a number of results in harmonic analysis, 
e.g. [6, S] (see [ 1 I). Our goal here is to provide an elementary proof with 
explicit constants. Indeed we prove that if n 3 3, 

where the constants are best possible. 
Inequalities equivalent to (2) and (3) by the Kato theory of smooth 

perturbations [4], but without best constants, have been known for some 
time, see e.g. Herbst [2, 33. 
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We provide three levels of the proof. First we note that (1) follows 
immediately from the existence of the trace and Kato’s theory of smooth 
operators [4]. Then we essentially translate what we need from the Kato 
theory to provide a proof for those who do not know this theory. Finally 
we provide an elementary proof of the trace theorems we need with 
optimal constants. 

The trace estimate we need (see e.g. Kuroda [7]) is 

s s”-, l~(ko)12k”-1dw~Cmin(l,k) 1/(1+~~)‘/~(~1/~ (4) 

(the stronger result that Kato and Yajima prove). 
The result from the Kato theory of smoothness that we need says that 

s m 11~ irH e 
-cc (54 

with 

cr=s;p llALqH-E)A*ll, (5b) 

which we also prove below. What we do not prove but use is the fact that 
CI given by (5b) is the optimal constant in (5a). 

First proof of (1). By (4) 

(cp,6(H-E)cp)= jS(k2-E) I$(ko)12k”-‘dodk 

@(ko)l knpl do 1 k cc El/z 
$iCmin(EP1/2, 1) I[(1 +x2)1’2~J12 

so 

i.e., 

/I(1 +x2)-r’2 (1 +H)“‘Q(H-E)(l +zq”4(1 +x*)-r’211 <c,. 

By (5) this implies (1). 1 
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Second proof of (1). We supplement (1) by proving the part of (5) we 
need! By the Plancherel theorem. if 

f(E) = ji” (eiE’Aep’“‘u) dt/(2x)“’ 
--r 

then 

but 

f(E) = (2~)“~ A6(H-E)u 

SO 

Since 

llf(E)l12 <2x llA6(H- E)1’2(12 IlS(H- E)“’ ul12 

6 27ca jld(H- E)1’2 ~11~. 

I (ld(H- E)1’2 ull’dE=] (u,s(H-E)u)dE= I(uI/‘, 

we have proven (5). 1 

These first two proofs have been formal about dealing with 6(H- E) so 
we exercise care in our last version of the proof. 

Third proof of (1). Define 6,(x) = (l/z) E/(E’ + x2). Then 

(~~)-1/2 J”, e-2& MeirE(Ae- i’Hu) dr = (2~)“~ A6,(H- E)u 

so as above 

m IIAeirHul12dud2na IIu112, 
-cc 

where 

a = sup I(A6,(H- E) A*\[. 
E,E 
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We work in k-space, i.e. with Fourier transforms, so, for example, (2) 
follows from 

jl(-d+1)~“2X1’46E(X2-E)X1’4(-4+1)~”*11~~. 

We turn first to the proof of (2). We suppose n > 3. Write a general u as 

with 

(6) 

(7a) 

with 

H = 
/ 

d* I (n-w-3)+w+(vw4)) 
dr* 4r2 r2 

with ~(0) = 0 boundary conditions. 
Consider the one-dimensional d-potential and - (d*/dx*) on ( - co, cc). 

Then - (d’/dx*) -/IS(x) h as 
-($p)‘. Thus (take /?= 2) 

a ground state exp( - $I 1x1) with energy 

w+$+l) 
and we cannot do any better than 4. Since H,b -(d*/dx*) we see that 

(u, h(r2-E)u)=--!-- (24, S(r-JE)u) 
2G 

and by taking r -+ cc we cannot do better than $. Thus 

(u, r”46,(r2 - E) r’14u) < [I ml E 
o i(E-r*)*+E* 

(2r dr) 1 (u, (-A + 1)~) 

+u, (-d+l)u) 

as was to be proven. 
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To prove (3), consider -@(r - r,,) perturbations of HICo. For /? small 
this operator is positive. The critical /I is when Hq = 0 has a solution which 
vanishes at 0 and is bounded at infinity. Away from r,,, Hcp = 0 means 

(p,J-w3)q 
2 

which has solutions r’* with a + = i(rr - 1); a_ = - $n - 3) so at the 
critical j?, the solution is 

v(r) = 
{ 

(r/rO)a+ rd r. 
W-d”- r2 r. 

and fl=r;‘(a+ -a-)=(n-2)/r,. That is 

6(r-r,)<(n-2)-l ro(-A) 

and (n-2))’ is the best constant. Thus 

6(r2 - ri) = (2ro)-l 6(r - ro) < [2(n - 2)] -I (-A) 

6(r2-r$= (2ro)-l 6(r-rO)< [2(n-2)1-l (-A) 

so that 

ll(-d)-1’26(x2-E)(-d)-1’21/ < l/2@-2) 

so as above, (3) follows. 1 

Note that since Kato’s theory [4] says that the best constant is 
271 sup, llAb(H- E) A* /I and our eigenvalue calculations for H,,, - 
@(r - ro) and H,= o + 1 - @(r - ro) get optimal B’s, we know our con- 
stants in (2), (3) are optimal. 
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