A REMARK ON GROUPS WITH THE FIXED POINT PROPERTY

BARRY SIMON

ABSTRACT. We prove that any group with the fixed point property actually leaves fixed points for measurable actions rather than only jointly continuous actions.

One says a locally compact group, G, has the fixed point property [2]– [4] if and only if every jointly continuous affine action of G on a compact convex subset, K, of a locally convex topological vector space, E, has a fixed point. A jointly continuous affine action of G on K is a map $(g, x) \rightarrow \alpha_g(x)$ of $G \times K \rightarrow K$ which is jointly continuous with each α_g affine. There are obviously other fixed point properties one might define by weakening the continuity properties required of the action. Specifically:

DEFINITION. A weakly measurable affine action of G on a compact convex subset, K, of a locally convex topological vector space is a representation of G by continuous affine maps of $K \rightarrow K$ so that for each $l \in E^*$ and $x \in K$, $g \rightarrow l(\alpha_g(x))$ is measurable. We say G has the strong fixed point property if every weakly measurable affine action of G on a compact convex subset, K, has a fixed point in K.

We remark, when K is not separable, weak measurability may hold for discontinuous actions as is shown by:

EXAMPLE. Let *E* be the Hilbert space of all functions on *R* with $\sum_{x \in R} |f(x)|^2 < \infty$, i.e. $f \in E$ is 0 except for a countable set. Topologize *E* with the weak topology and let *K* be the unit ball. For $t \in R$ let $(\alpha_t f)(x) = f(x+t)$. It is easy to see α_t is weakly measurable but not continuous.

Our goal here is to note that G has the strong fixed point property if and only if it has the fixed point property. This is actually a very simple consequence of the Greenleaf-Namioka theorem [3] on the equivalance of the various notions of amenability.

THEOREM. The following are equivalent for a locally compact group, G: (a) There is a left invariant mean on $L^{\infty}(G)$.

(b) G has the strong fixed point property.

(c) G has the fixed point property.

(d) There is a left invariant mean on the functions on G which are bounded and uniformly continuous on the right.

© American Mathematical Society 1972

Received by the editors May 3, 1971.

AMS 1969 subject classifications. Primary 2220, 4750; Secondary 2240, 5230, 4601. Key words and phrases. Fixed point property, amenable group.

PROOF. (b) \Rightarrow (c) is trivial. (c) \Rightarrow (d), in fact (c) \Leftrightarrow (d) is a result of Rickert [4]. (d) \Rightarrow (a) is the Greenleaf-Namioka theorem. Thus, we need only prove (a) \Rightarrow (b). Suppose (a) holds and let $g \rightarrow \alpha_g$ be a weakly measurable action of G on K, a compact convex subset of a locally convex space, E. Pick $x \in K$. For each $l \in E^*$, $g \rightarrow l(\alpha_g(x))$ is a function in L^{∞} (since l is bounded on K). Let m be the left invariant mean on L^{∞} .

Define $F(l) = m(l(\alpha_g(x)))$. F(l) is linear in l and $\sup_{x \in K} l(x) \ge F(l) \ge \inf_{x \in K} l(x)$ for any real linear functional. If we can show F(l) = l(y) for some $y \in E$, it follows from the Hahn-Banach separation theorem that $y \in K$. If we know $y \in K$, then, for any $l \in E^*$, $h \in G$,

$$l(\alpha_h(y)) = (l \circ \alpha_h)(y) = m_g(l(\alpha_h \alpha_g(x))) = m_g(l(\alpha_g(x))) = l(y).$$

Again using the Hahn-Banach theorem, $\alpha_h(y) = y$.

It only remains to prove F(l)=l(y) for some y. By the Mackey-Arens theorem [1], we need only show F(l) is continuous when the Mackey topology, $\tau(E^*, E)$, is put on E^* . If $l_{\alpha} \rightarrow l$ in the Mackey topology, $l_{\alpha}(z) \rightarrow l(z)$ uniformly for z in a compact subset of E; in particular uniformly for $z \in K$. Thus $l_{\alpha}(\alpha_g(x))$ converges to $l(\alpha_g(x))$ in $L^{\infty}(M)$. Since m is an L^{∞} continuous functional, $F(l_{\alpha}) \rightarrow F(l)$. Q.E.D.

We remark that the proof in [3] and [4] of $(d) \Rightarrow (c)$ does not extend to $(a) \Rightarrow (b)$ so that the trick of using the Mackey topology is essential.

It is a pleasure to thank Mike Reed for suggesting the example above.

REFERENCES

1. G. Choquet, Lectures on analysis, Benjamin, New York, 1968.

2. M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590; Correction, ibid. 8 (1964), 713. MR 25 #1547.

3. F. P. Greenleaf, *Invariant means on topological groups and their applications*, Van Nostrand Math. Studies, no 16, Van Nostrand, New York, 1969. MR **40** #4776.

4. N. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 221–232. MR 36 #5260.

DEPARTMENT OF MATHEMATICS AND PHYSICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

624

http://www.jstor.org

LINKED CITATIONS

- Page 1 of 1 -

You have printed the following article:

A Remark on Groups with the Fixed Point Property

Barry Simon *Proceedings of the American Mathematical Society*, Vol. 32, No. 2. (Apr., 1972), pp. 623-624. Stable URL: http://links.jstor.org/sici?sici=0002-9939%28197204%2932%3A2%3C623%3AAROGWT%3E2.0.CO%3B2-D

This article references the following linked citations. If you are trying to access articles from an off-campus location, you may be required to first logon via your library web site to access JSTOR. Please visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

References

⁴ Amenable Groups and Groups with the Fixed Point Property
Neil W. Rickert *Transactions of the American Mathematical Society*, Vol. 127, No. 2. (May, 1967), pp. 221-232.
Stable URL:
http://links.jstor.org/sici?sici=0002-9947%28196705%29127%3A2%3C221%3AAGAGWT%3E2.0.C0%3B2-%23