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We consider Schrodinger semigroups e.- IH, H= -A+V on Iw” with 
V- --cIxl-’ as 1x1 --rco, O<c<[(l/2)(n-2)]* with H>O. We determine the 
exact power law divergence of I~e-‘Hi~p,p and of some IIe-‘Hlly,p as maps from Lp 
to Lq. The results are expressed most naturally in terms of the power a for which 
there exists a positive resonance 9 such that Hq = 0, q(x) - 1.x -‘. :Ta 1991 Academic 

Press, Inc. 

1. INTRODUCTION 

We study the asymptotic behavior as t -+ co of the Lp norms of e -M 
where H = -A + V is a non-negative Schrodinger operator on L2( RN). If 
H has a zero energy resonance q such that q(x) - 1x( Pc( as 1x1 -+ CC we find 
that the Lp norm remains bounded as t + cc if 2 < p < N/a. When 
N/a < p < cc, we find the precise power law which governs the divergence 
of the norm as t -+ co. See Theorems 11 and 15 for the precise statements 
of these laws. We also obtain pointwise bounds on the heat kernel which 
indicate the increasing influence of the resonance as t + + co. See 
Theorems 16 and 18. Our results apply under a variety of somewhat 
different technical conditions on V’ and q, but are relevant when 
V(x) - -cIxI ~-’ as /xl -+ cc for some c > 0. Such potentials just fail to lie 
in the class LN12-‘n LNi2+” to which most earlier results concerning 
resonance phenomena have been restricted. 

* Research partially funded under NSF Grant DMS-8801981. 
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We suppose that H = -A + V where V, is KF and VP lies in the Kato 
class K,. We consider various subcriticality and resonance conditions and 
assume throughout that H 3 0 as an operator on L*( RN). We only consider 
the problem in dimension N > 3, since resonance behavior is different for 
N= 1, 2. It turns out that a few results are different or simpler to treat 
when N B 5, but we discuss this when it becomes relevant. 

One says that V is short range if VE LN’*-’ n LN’*+’ for some E > 0. 
Since the study of resonances and criticality is fairly extensive under this 
condition (see Pinchover [lo], Zhao [15], and references therein), we 
consider potentials outside this class. One also says that V’ is subcritical 
if for all WE C; one has H-E W 3 0 for small enough E > 0. Of more 
importance in this paper is a modified notion. We say that H is strongly 
subcritical if H-&V- 2 0 for small enough E > 0. The status of this 
definition is clarified by the following lemma. 

LEMMA 1. Zf we put 

A = V’i*(-A+ V,)-’ VI!’ 

then H 2 0 if and only if I( A 1) < 1. The following are equivalent : 

(i) V is strongly subcritical. 

(ii) llA/i < 1. 

If, moreover, V _ E L :I*, thert (i), (ii) are equivalent to 

or 
E>O!iii) F 

all 0 6 WE LEl”/’ one has H-E W 2 0 for all small enough 

Proof: Assuming (i) we have 

-A+V+~(~+E)V~>O 

and hence 

l>(-A+V+)“*(l+E)J’(-A+V+)--“*=(l+&)BB*, 

where 

B=(-A+ V+)-“* V’/‘. 

Thus 

IIAll = IIB*BIJ = IIBB*I) < (1 + E))‘. 

This proves (ii). The proof of (ii) = (i) is similar. (ii) 3 (iii). If 0 < WE LF” 
then there exists c < co such that 

W<C(-A)Gc(-A+ V,). 
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Therefore 

O<(-A+ v+)p2 W(-A+ v+)p2<c 

SO 

I~(-d+V+)-‘i2(V~+&W)(--+++)~‘!211dIIAI/+&C~1 

for small enough E > 0. This implies that 

06(-A+ v+)r”2(vp +&W)(-A+ V+))“U 

SO 

VP +EW< -A+ V, 

and 

H-EWZO. 

(iii) j (i) is trivial if VP E LE/‘. 1 

We comment that if VP is short range then A is a compact operator on 
L2(RN). Thus strong subcriticality is equivalent to assuming that the 
largest eigenvalue of A is less than one, and this is also equivalent to 
subcriticality. We show in Example 5 that subcriticality and strong 
subcriticality are not equivalent in general. 

Our main interest is in finding upper and lower bounds on llePH’llp,p 

where /IJ4,,, denotes the norm of an operator X from LP to Ly. It turns 
out that if V(x) - --cIxI 2 as 1x1 -+ co, where c>O, then a much wider 
variety of phenomena can occur than are found in the short range case. 

From the point of view of the potentials V, it appears that we are 
analyzing very special cases, albeit borderline and thus interesting ones. 
For if c>O and V- -cx OL at infinity, then tc > 2 means short range and 
a < 2 means not subcritical. However, if one thinks of Dirichlet forms and 
writes R= UHU ’ as 

(cp, hd=j Ivd2'12k (cp, cp) = j v2r2 & 

where Hq = 0, then all short range cases correspond to q-c at infinity 
while we are looking at 9 - 1~1~‘. From this point of view it is the short 
range case that looks special. 

Finally we close by noting why 11 f II y,p are of .considerable interest: 

(1) Ilep’HIl x.1 bounds provide pointwise bounds on the heat kernel. 

(2) JJe rHJ1 YU,2 bounds provide pointwise bounds on eigenfunctions. 
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Since bounds on (lerfHI/y, p imply bounds on IIe m’Hll y,p by interpolation, 
our results show that those of Journe et al. [S] do not extend beyond short 
range potentials. 

E. B. Davies thanks D. Wales for the hospitality of the Caltech 
Mathematics Department, where much of this work was done. 

2. RESULTS NOT DEPENDING ON RESONANCES 

We start with a result of Simon [ 11, 121. 

PROPOSITION 2. If H 3 0 then there exists c < co such that 

lle~“*ll cc,Lc bc(l + tp2 

for all t>O. Moreover, Ile-“‘ll,,,<oO for allpdq and t>O. 

Under strengthened hypotheses on the negative part of V we may say 
more. 

THEOREM 3. If H 2 0 and V ~. E Lt. for some p > 2 then 

llepH’ll m,=, d c(l + ty’*. (2.1) 

If also V is strongly subcritical then 

/leCHrIj,~, dC(l + t)“‘2p”2. (2.2) 

Proof. If we put K = -A + V, then 

e -Hf 
=e 

--Kt+f’ e-H.v~ e-K(l-s) & 

s=O 

Therefore 

O<epH’l =epK’ 1 + {,y=, e-““V- ePK(‘Ps)l ds 

s I <l+ e -HsV~-(l)ds 
., = 0 

and 

5 
I 

Ode- WC+ 1’1 de -“I + epH(“+‘)( VP) ds. 
s=O 
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We deduce (by interpolation) that 

s i <Cl + .FZO ‘I -. e “(‘+“(Vp)Ilm ds (2.3) 

If we put 

n(t)=sup{(le~H(“+l)Il,,,:O~s~~} 

and use the estimate 

IW 
H(s+ 011 

s,2~Il~-HII,,211~-HSl12,*d~3 

then 0 < t d T implies 

lie- 
H(r+ I)11 io,~ <c, +c,Pz(T)‘~~“’ T. 

This easily yields 

~(T)<c,T~(T)‘~~‘~ 

for all T 2 1, and hence 

(/eCHfllm mdn(T)<c6Tp’2 

as required to prove the first statement of the theorem. 
If H is strongly subcritical, then H 2 c?H, for some cx > 0, where 

H,, = -A. Therefore 

ll~~“2fl126~~‘ll~1’2fl126~,llfl12~,~~+2~ 

for ail f E L2 n L ZN’(Nf2) by a standard Sobolev inequality. Therefore 

llecHffl12= tr”21(epH’(Ht)1’2 Hp”Zflj, 

<c,t -1’2~~H-“2f~~2 

~C3~-“211fl12N,(N+*). 

It follows that 

Ile-HzII 2N~yl(N-2),2= Ile~H’I12,2N,~N+2~~~3f-“2 (2.5) 
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and this implies that 

IHe- H(r+ I)11 =,2 d cq( 1 + t)- “2. 

We now substitute this into (2.4) to get 

n(T)dc, +c,n(T)‘-2’T-“p 

<c,n(T)‘-2/P T’ -‘I/, 

for all T 3 1. This yields (2.2), as before. 1 

Sometimes by further interpolation, one can do better. For example, 
if N= 8 and p = 2, then we can interpolate between ljePtHll co,co < Ct 
and Jle-‘Hllg,j,2 < Ct -‘I2 to see that llep’HII 32,9, 8,3, < Ct -‘I8 and so 
lle--rHII 32,9,2 6 Ctp5’8 and thus llePrHll 7;,a d CZ’-~‘~ which we could iterate 
and improve. 

THEOREM 4. Zf H 3 0, VP E Lr”/‘, N > 3, and V is strongly subcritical 
then 

for all t 3 0. 

l/epH’Il,,, <c(l +t)N’4p”2 

ProoJ: If N> 5, this is an immediate corollary of Theorem 3, so 
suppose N = 3 or 4. If t 2 0 then 

lle- H(r+ I)11 
cc,ZN/(N+2) 

< lie-““II m,2Nl(N~2)~~e~H"'2+"3'~~2N~(N~2),2~~e~H'f'2+"3'~~2,2N~(N+2) 

<c,(l + t)-1. 

We combine this with the bound 

II- H(‘+‘)(lm,m Bc, +c, 
s 

; (le-Hk+ I)11 ); 

where (1 - A)/cc + A( (N + 2)/2N) = 2/N, to obtain 

n(T)Qc’ +c,~(T)‘-~ T’-“: 

for all T> 1. This implies 

n(T)~~c,T’/^~‘=c,T’N+2)/4-‘=C5TN/4~’/2. 1 
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3. RESONANCE EIGENFUNCTIONS AND UPPER BOUNDS 

If H= -d + V>O and VEKF then there always exists at least one 
positive continuous function v] on RN such that Hq =0 in the sense of 
distributions. This function need not be unique or bounded, but in the 
applications we have in mind, it is both. Since this problem has already 
been studied in detail by Murata [S-S], we simplify our treatment by 
defining a resonance to be a positive continuous bounded function rl on RN 
such that e-“‘rl= q for all t >, 0, where e ~ Hf is the semigroup on L” con- 
sistent with the usual self-adjoint semigroup on L*. We do not exclude the 
possibility that ye E L2 and so is a proper bound state. We start with an 
example discussed by Murata [S-S]. 

EXAMPLE 5. Let N>,3 and put H= -A+ V where 

V(x) = 
i 

0 if Ix)61 

-C/lXl’ if IxI> 1 

so that H > 0 if and only if c < ((N - 2)/2)2. The same condition ensures 
that V is subcritical, but for strong subcriticality we need c < ((N- 2)/2)2. 
Assuming 0 < c < ((N - 2)/2)2, there are two radial solutions of Hq = 0 on 
{x: 1x1 > 1) namely 1x1 --I and 1x1 --a’ where 

o<ci= E&m<E$ 

N-2 
-<n’=y+/o7c<N-2. 

2 

There is one positive radial solution q of Hq = 0 on the whole of RN and 
this satisfies q(x)- 1x1-’ as 1x1 + co. 

We say that a resonance q > 0 is slowly varying with index c1> 0 if 

v(x) 
-<c,(l + lx-yl)* 
U(Y) 

for all x, y E RN. We say that r~ is regularly varying if 

(3.1) 

C ,‘<--, 
v(x) <c 

V(Y) 2 

whenever 
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Both of these conditions are satisfied if 

for all x E RN. 

c,‘(l+ Ixl)--“d~(X)<cj(l+ [xl) m1 (3.2) 

LEMMA 6. If H = -A + V 3 0 has a slowly varying resonance v] with 
index a < (N - 2)/2 then V is subcritical. If (3.2) holds for some 
a < (N - 2)/2 then V is strongly subcritical. 

Proof We define the unitary operator U from L2(RN, ye’ dx) to 
L2(RN, dx) by Uf = qf and put A= U -‘HU so that fi has the quadratic 
form 

o(f) = j lV.12 v2 dx. 

We next observe from (3.1) that 

for all xeIWN, so ~>c,~i, where PI, is the zero energy resonance of the 
operator H, of Example 5, with c = a(N- 2 -LX). Since the potential V, of 
Example 5 is subcritical, given WE CF there exists E > 0 such that 

=C : i/.l’+$rl’dx. 
5 

Therefore 

and H is subcritical. 
If 0 < a < ((N - 2)/2)2 then (3.2) implies 

If WE LNj2 then by the strong subcriticality of H, there exists E >0 such H’ 
that 
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Therefore 

and 
1 

lVf12 q* dx 2 EC,~ i‘ 
\Vj-12 Wq’dx 

H>Ec;~W. I 

We now define K(t, x, y) to be the heat kernel of ePH’. In our next 
proposition one can replace 5 by (4 +-E) for any E > 0. 

PROPOSITION 7. For any H, one has 

O<K(t,x, y)<ct-N’Z exp[-q] 

for all 0 c t < 1. Zf H 2 0 has a slowly varying resonance one also has 

O<K(t,x, y)<cexp[ -v] 

for all t > 1. 

The first statement is taken from [ 131 and the second fom [3]. 

THEOREM 8. Zf H 2 0 has a slowly varying resonance q with index tl, then 

I/ Hrll m,m d c,(l + t)z’2+e 

for all t > 0. 

Note. Apart from the possible elimination of E > 0, it follows from 
Theorem 14 below that this is the strongest result possible under the stated 
hypothesis. 

ProoJ: We put 

(eeH’l)(x) = s K(t, x, y) dy= I, + I,, 

where 

h=j K(t, x, Y) 4 
Ix-.vl<R 

d K(t, x, Y) 
r?(Y) 
-c(l + Ix- yl)“dy 

Ix ~ VI < R v](x) 

~c(l+Wr(x)-' j,. 
r 

-y,<RK(t,x, y)rl(y)dy 

d c( 1 + R)“. 
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Assuming t 3 1 we use Proposition 7 to obtain 

We now put ron R = t’/= ++ to obtain 

O<(e- “‘l)(x)<c(l +t1/2+E’a)’ 

=c(l +t “=+~‘~)~+0(1)<c’(1+t)~‘2+E, 

The proof is completed by using the identity 

lWH7 m.m = Ile~“W,. I 

If the resonance q does not lie in L* then the “projection” 

is not a bounded operator on any Lp space. Nevertheless the presence of 
q increasingly dominates the heat kernel as t increases. The following upper 
bound on the heat kernel gives an impression of its effect. See also 
Theorem 18 for a lower bound. 

THEOREM 9. If H 3 0 has a regularly varying resonance then 

OGK(t,x, y)<c,a(t,x)a(t, y)exp[ -H] 

for all 6 > 0 and t > 0, where 

a(t,x)=max{(l+ lxl))N’2, tp”‘“}. 

Proof: We first note that if we transfer the problem to the weighted 
space L2(IWN, q2 dx) in the usual way, the new heat kernel R is related to 
K by 

&t, 4 Y)’ 
K(t, x, Y) 

a(x) V(Y)’ 
(3.3) 
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We now apply the methods of Theorem 3 of [3] taking the bounded 
geometry radius r(x) at XE RN to be 

We obtain 

r(x)= $(l + 1x1). 

0 6 R(t, x, y) < clB(x, +*)I I’* IB(y, s;‘*)( - I’* 

.exp - 
[ 

(Ix-y\ -sy-sy,: 

4(t+s, +s,) 1 (3.4) 

provided 0 <s, < t, 2.~:‘~ < r(x), 2~:‘~ < r(y) where, according to [3] 

By the assumption that 9 is regularly varying, we see that 

~-‘q(x)~ rN< IB(x, r)l <q(x)* rN (3.5) 

for all r < r(x). Combining (3.3), (3.4), and (3.5) we obtain 

OdK(t,x, y)<c,s;Ni4s;N/4exp 
(Ix-P’J -s;“-s;“): 

4(t+s,+s,) 1 
(3.6) 

under the stated conditions on s,, s2. We now put 

and estimate the exponential factor in (3.6). If IX - y\ 2 t112 then 

Ix-Y12(1-2F)~<(IX-yl-s~‘*-S:‘*):<JX-Yl* 
4t( 1 + 2&2) 4(t + Sl + s*) 4t 

and if lx- y( < t”’ then 

o((lx-YI-‘i’2-“:‘2):~Ix-Yl~1, 
\ 

4(t+s, +s,) 4t 

In both cases the theorem follows upon putting 

1+2&* 
1+6=(1-2&)2. I 
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An immediate corollary of this theorem is that 

lim K(t,x,x)~~c(l+~xJ))~. 
r--t3c (3.7) 

However, it follows directly from the spectral theorem that 

lim K(t, x, x) = 0 
z+m 

unless q E L2( [WN), in which case 

lim K(t, x, x) = V(X)* 
I - m 

assuming q is normalized. Note that the RHS of (3.7) just fails to lie in 
L’( RN). 

4. CENTRAL POTENTIALS 

In this section we obtain some essential improvements on the upper 
bounds of Ile-H’llp,p as t + CC under the assumption that the potential V 
is central, or approximately so. We start with a result of Murata [6-83. 

PROPOSITION 10. Let H = -A + V where V < 0 is a subcritical potential 
which is radial and increasing with V(r) - -c/r2 as r + 00, where 
0 < c < (N- 2)/2)2. Then there is a unique positive radial resonance 9 of H, 
and this satisfies 

as r + CC where 

In our terms the resonance q is both slowly and regularly varying, since 
it satisfies (3.2). Moreover V is strongly subcritical by Lemma 6. 

We say that an operator A is bounded on L{, if 

IIMllp,w G cllfllp,w 

for all f~ LP,, where 

IlfIIP,M. = sup{ I (x: f(x) > n/I>/ l’p k 0 < n < co}. 

Note that this is not a norm (but it is equivalent to a norm [14]). 
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THEOREM 11. Under the conditions of Proposition 10, e- Hr are uniformly 
bounded on Li’” for 0 < t 6 00. Hence 

lle~~H’IIP,P<cp< cc 

for all t > 0 and 2 < p c N/u. Also 

Ile-H’llp,p <c,,,(l + t)z’2-N’2p+c 

for all t>O, E>O, and N/w.fp<cO. 

Proof Let * denote the (non-linear) operator of symmetric decreasing 
rearrangement [ 11. If 0 < f E LFiy/” then 

iif*il N/s.w = llfll N/a,tt 

and 

obf*(x)~clifIIN,?.~IXI -'. 

The BrascampLieb-Luttinger theorem [ 11 implies that 

O<(eCHlf)*<epH’(f*) 

< cllfli N/a,tve ~Hr(lxl~3)~cllfIIN/~~e-H"~1)g, . 
where 

Odg=e~H(IxI~X)EL~nLL 

is a bounded symmetric decreasing function. Hence 

0 d g(x) d Cl v(x) 

for some ci < CC and all x E RN. We deduce that 

oG(e-Htf)* (X)~CllfIIN,r.H.Cle-H"~ l))?=CilfliNIx,&lq 

and this implies that 

The second statement of the theorem follows by interpolation between the 
bound of Theorem 8 and 

Remark 12. One can extend this result to some non-central potentials 
if the spherical rearrangement of the potential yields a subcritical one. 



108 DAVIES AND SIMON 

5. LOWER BOUNDS ON HEAT KERNEL NORMS 

In this section we show that the upper bounds on J/epHrjlp, p given by 
Theorem 11 are essentially sharp. We obtain corresponding lower bounds 
on the norms by adapting some estimates of Nash [9, 4, 21. In this section 
it is not necessary for V to be a short range perturbation of a central poten- 
tial. [From Theorem 18 we can also obtain lower bounds similar to those 
in Theorem 14; see Section 61. 

Throughout this section we assume that H 2 0, that I’ is strongly sub- 
critical, and that H has a resonance q 3 0 in Lrf” which is slowly varying 
with index tl where 0 < c1< (N - 2)/2. 

LEMMA 13. Let 2 d p G co and let 

n,(t)=sup{ IleCH”I~p,p:O<S< t}. 

Then 
llepHrll p,2 d ct-‘n,(t) 

for all t > 0, where y = N(p - 2)/4p. 

Proof: We first note that if l/p + l/p’ = 1 then 

Ilfll2G Ilfll:N,(N--2)Ilfll~‘i~ 

where 

or equivalently 

I,-‘-I= 2P 1 
N(p-2)=2y’ 

Putting this into the Sobolev inequality 

llfll L,(M) d 42cs, 

we get the Nash-type inequality 

Ilf II ;‘” < cQ(f) Ilfll;!’ -‘I”. 

If U, = Ilf,ll i where f, = e- “If, we deduce that 
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Integrating this we obtain 

and hence 

llfrll26czt- jd2(’ - qf\l,&( t) 

= c2 t - ‘IlfIl,‘~,(t). 

The inequality 

I- Hrll 2,p.<Ct-t’ 

which follows yields the lemma by taking adjoints. 1 

THEOREM 14. For any E > 0 and 0 < t < cc we haoe 

c,,,(l + t) x/2-L< lle-H’ll m,m <c,,,(l + f)z~2+h 

and 

(5.1) 

C3J-y1 + ty-&< IIe-H’lI,,Z~C4,ct~N’4(1 + ty+&. (5.2) 

Proof The upper bound of (5.1) was proved in Theorem 8. Lemma 13 
with p = co now yields the upper bound of (5.2). Assuming t 3 1 we obtain 
by interpolation 

where 

/lvl/~ = Ile-Vlcc < Ile’-ffrll &CT;; Ile-H’llk,z IIvII~~~,~~, 

a ;1 1-A -=-+- 
N2 co’ 

Therefore 

and 

llqll x Q IIe-“‘lj&;~cl t(CL’2-NN14+EJA 

II- Hrll nc,*2c2t- (42 -N/4+r)(l/(l-;.))- 
-czt 

-a/Z-i:’ 

The lower bound on Ile-H’II ar,2. for t > 1 follows in a similar manner. 
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Finally the lower bounds for 0 < t < 1 follow on general grounds without 
any of the conditions on V of this section [13, 23. 1 

We finally give a converse to Theorem 11, admittedly under somewhat 
different conditions. 

THEOREM 15. If t b 0 and 2 < p < N/a, then 

Ile~H’llp,p~ 1. 

If t>O, E>O, and N/cc<p<co then 

JleCH’(lp,p>cp,iz(l + t)b’2-NN/2ppE. 

Proof: The first inequality is a simple interpolation: 

1 = l(eCH’l12,2 d (le~N’ll~,plle~H’/I~~~~ = lle~H’llp,p~ 

where 

1 2 1-A -=-+- 
2 P Pl’ 

In order to prove the second inequality we combine Theorem 11 and 
Lemma 13 to get 

if t3 1. Also 

lIylllp d Ile-H’ll~,Z llep”‘ll~,;’ llsll N/I, w 5 

where 

a 2 1-A -=-+- 
N2 P 

or equivalently 

PCN- 2~) 
2(pc( - N)’ 

This implies 
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where 

If 0 c t < 1, then the second inequality of the theorem follows from the 
first, which is actually valid for all p, 

6. FURTHER POINTWISE HEAT KERNEL BOUNDS 

In this section we obtain pointwise upper and lower bounds on heat 
kernels which go beyond Proposition 7 and Theorem 9. 

THEOREM 16. Suppose that V is strongly subcritical and that H 2 0 has 
a resonance q > 0 which is slowly varying with index CI < (N - 2)/2. Then for 
any &>O and t> 1 we have 

O<K(t, x, y)dc,ta-N’2+Eexp[ - Ix- y12/aet] 

for some positive constants as, c,. 

ProoJ: By combining Theorem 8 with Lemma 13 for p = co, we obtain 
for t> 1 

This implies that 

We then note that 

Ile~H*llm,l = sup{K(t, x, y): x, YE R”} 

= sup(K(t, x, x): XE KY”} (6.1) 

to obtain 

580 102'1.8 
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We also have the upper bound 

by Proposition 7. Therefore 

’ -2 
O<K(t,x, y)< {cZ,Ei2t1+Nf2+cf2 A cexp 

d [ 

Ix-y1 

-- 
5t 

for any 0 < A < 1. The theorem follows by taking A close enough to 1, 
specifically 

. N/2-a-~ 

‘= N/~-CC/~’ 

COROLLARY 17. Under the same conditions the Green function G of H ~ ’ 
satisfies 

O,<G(x, y)<c,lx- y12-“‘+c21x- y12+2x-N+a. 

Proof We have 

G(x, Y) = jam K(t, x, Y) dt 

= J’ K(t, x, y) dt + j-” K(t, x, Y) dt. 
0 I 

The two integrals are estimated using Proposition 7 and Theorem 16, 
respectively. 

Our final theorem is of a rather limited character but indicates that the 
power of t in Theorem 16 is the correct one. 

THEOREM 18. Let V he a subcritical central potential whose resonance 
rj > 0 satisfies 

lim r”q(r) = a 
r-m 

where a > 0, 0 < CI < (N - 2)/2. Then for large enough t > 0 and all x with 
(xl < t’12 we have 

K(t, x, x)>c,~(x)~ t’-N’2. 
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In particular 

Remark. Note that the proof of Theorem 18 is independent of the proof 
of Theorem 14, so it provides an alternate proof of the lower bound half of 
(5.2) since 

Ile- 2N*II ,,% f llepNrll 1,2/le~H’l12,m = lle~H’ll~,,. 

Proof Let cp > 0 be the ground state eigenfunction of -A on 
{x: 1x1 < 1 } normalized by ~ICJJ 11 2 = 1 and subject to Dirichlet boundary 
conditions. Let E >O be the corresponding eigenvalue. We define a spheri- 
cal symmetric function f on {x: 1x1 < RB,} by 

f(r)= ;(:(r() ,/R) 
if O<r6R 

R R if R < r < R/8,, 

where yR and tIR are determined by the conditions 

YI'(R)=YR~RR~'v'(~R) 

0<8,< 1. 

Eliminating y R, one of the conditions is 

eR@(eR) _ h'(R) 

de,) v(R) 

As 8, increases from 0 to 1, the LHS decreases from 0 to - co, so far large 
enough R this equation has a unique solution. Moreover 

lim 0, = 0, 
R - CG 

where 0 < Q < 1 and 

eqf(e)/rp(e) = --ct. 

The first consistency condition now yields 

YR = dR)lddR) 

so 

lim R”y R = a/cp( 0). 
r - a2 
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The functionfis the ground state of the Schrbdinger operator 

H,=-d+V, 

on (x: 1x1 <R/q,} subject to Dirichlet boundary conditions where 

VI(X) = V(x) if IxlbR 

- EO’,/Rz if R < (xl < R/B,. 

Since 

within {x: 1x1 < R/O,) one 

K(t, -G x} 

V, + E82,/R’> V 

has 

> K,(t, x, x) exp[-El$t/R’] 

f(x)2 a-exp[-E0,t/R2] 
Ilf II : 

whenever 1x1 <R/6,. Now 

as R-+oo. If we put R=t ‘I2 then for large enough t and all 1x1 < t’j2 we 
obtain the first statement of the theorem. The second follows from the 
identity (6.1). 
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