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Abstract. For large classes of Schrodinger operators and Jacobi matrices we prove
that if h has only one point spectrum then for φo of compact support

1. Introduction

Consider a free Schrodinger particle. Then the Heisenberg position operators
obeys

x(t) = x + tp

since p is a constant of the motion. Thus |x(ί)| grows linearly in ί, indeed for any

]\m(φ,x(t)2φ)/t2 = (φ,p2φ)>0.

This paper had its root in a question of Joel Lebowitz asking if such ballistic
motion didn't have its roots in absolutely continuous spectrum. Alas, while it
is likely that Joel is correct, I have been able to obtain only partial results.
Here I will prove that for Hamiltonians with pure point spectrum (think of the
random case [1]), we have that for a dense set of initial φ that (φ,x(t)2φ)/t2 —> 0.
Unfortunately, I have nothing to say in the singular continuous case.

For background note that it is a result of Radin-Simon [2] that when φ is in
Cg°, (φ,x(t)2/t2 is bounded at infinity in great generality.
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2. The Discrete Case

On 12(Z°), let ft0 be defined by

If v is an arbitrary real valued function and also the operator of multiplication
by v on D(v) = {u | I"(|ι;(n)| + l)2 |u(π)|2 < oo}, then ft = fto + v is self-adjoint on
D(v) since fto is bounded.

Define

(XM) (n) = nu(n)

and p = i[fto,x] formally, explicitly

(pu) (n) = -

l;Ί=i

Then p is bounded. Moreover, we claim that if

x(ί) = eitHxe-itH, p(ί) = eίtHpe~itH,

then

f
x(t) = x + / p(s) ds

0

as forms on D(x). For it is easy to see that x(0) is bounded and equal to p. Thus,
we have, since p is bounded:

Lemma 1.1. For φ e D(x):

t t

lim \(φ9 \x(t)\2φ) = lim \ ί ds ί du(φ9p(u) ' V(s)φ). (1)
ί-^ oo t t—>oo t J J

0 0

With this we prove:

Theorem 1.2. Suppose that ft has only point spectrum. Then for φ £ D(x).

lun(φ,\x(t)\2Φ)/t2 = O.
ί->-00

Proof We will show the right-hand side of (1) goes to 0 for all φ. The integrand
in (1) is uniformly bounded, so it suffices to prove the result for a dense set of φ,
say a finite sum of eigenfunctions of ft. Let φn be a complete set of eigenfunctions
of ft:

hφn = enφn.

Thus we need only show that for all n,m:

du(φn,p(u)'V(s)φn)^O. (2)

0 0
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Let pn/t = (φn,vΦk) and

0 0

so

left-hand side of (2) = Σ $nk Vkmfn,m,k(t).
/c

Next note that |/1 < 1 and

Σ ip̂  PU < f Σ ip^2)1/2 ( Σ i

Thus by the dominated convergence theorem, it suffices to show that for each
n,m,k either p ^ p/cm = 0 or fn,m,k(t) —• 0 as t —> oo. The integral determining /
is easy to do and one sees that f(t) —> 0 unless En = Ek = Em. Thus the theorem
follows from the virial theorem (Lemma 2.3) below. D

Lemma 2.3. If En = Ek, then p ^ = 0.

Proof. Define XM by
(xM). = M %i> M

= Xi \Xi\ < M

= - M xz < - M

and PM = Ϊ[^O ?

X M] Then by a direct calculation

s— lim p M = p,
M-xx)

so it suffices that

m) = 0.

Since XM is bounded, this follows by expanding the commutator. D

3. The Continuum Case

Theorem 3.1. Let V be a multiplication operator on L2(R") so that H$ + V =
—Δ + V is bounded below on Q(Ho)Γ)Q{V) and let H = Ho + V be the form closure.
Suppose Q(H) c Q(HQ). (Equivalently there is a form bound Ho < c(H + d)) Let
φ € D(x) Π Q{H). Suppose that H has only point spectrum. Then

\im(ψ,\x(t)\2ψ)/t2 = 0.
ί-*OO

Proof Except for technicalities, the same as Theorem 2.2. By Radin-Simon [2],
ί

D(x) Π Q{H) is left invariant by eίtH and x(ί) = x + 2/p(s)ds. As in Sect.2, it
o

suffices to show for φ e Q(H),
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Since p(s) (H + ί)~1^2 is uniformly bounded, we need only show this for finite
sums of eigenfunctions.

As in the proof of Lemma 2.3, we define XJV and pjv but with a slightly
different formula. Pick f(x), C0 0 on R so / ' > 0 and

f(x) = +l for ± x > l = χ for |x| < 1/2,

and define x# = Nf(x/N) and p^ = ~[HQ,X^]. XJV is bounded but p̂ y is not.

However for φ e Q(Ho) we have \\(PN — P)Φ\\ ~> 0 and so the argument in Lemma
2.3 extends. D
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