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In the present paper we consider Neumann Laplacians on singular domains of 
the type “rooms and passages” or “combs” and we show that, in typical situations, 
the essential spectrum can be determined from the geometric data. Moreover, given 
an arbitrary closed subset S of the non-negative reals, we construct domains 
Q = Q(S) such that the essential spectrum of the Neumann Laplacian on R is just 
this set S. ‘PI 1991 Academnc PEW, Inc 

Going back to Weyl’s celebrated article on the asymptotics of Dirichlet 
regions in two dimensions, there is an enormous literature on Laplacians 
associated to regions of R”. Much of the literature is on the Dirichlet case 
which is easier, in part, because of compactness results. In this paper, we 
want to contribute to the study of the Neumann case, most particularly to 
identify the essential spectrum for Neumann Laplacians for some special 
regions. 

Given an open region, Sz, in R”, we let 9(--d:) be the set of all 
functions in L*(Q) whose distributional gradients are in L, and we define 
-A: via the quadratic form relation 

(4. -AR,4) =I IVd(x)l* d”x. 
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It is a well-known result of Meyers and Serrin (cf., e.g., Adams [ 11, 
Gilbarg and Trudinger [lo]), that the functions in 2!( -d$) which are C” 
in the interior are dense in 2!( - A$). The closure of C:(Q) is the form 
domain of the Dirichlet Laplacian. 

Dirichlet Laplacians of bounded regions have discrete spectrum since it 
is not hard to show their resolvents are compact. On the other hand, it 
has been known for many years that Neumann Laplacians of bounded 
regions need not have purely discrete spectrum. Mind you, if the region is 
sufficiently regular, the Neumann Laplacian is compact-for example, if 
there is a piecewise smooth boundary. The following is an example of a 
region going back at least to Courant and Hilbert known as “rooms and 
passages.” 

To construct a typical rooms and passages domain (as shown in Fig. l), 
take a sequence of rooms (= open rectangles R,, contained in the unit ball 
of R2, k EN, R, symmetric with respect to the x-axis, and such that 
R, n 17, = @, k #j), which are joined together by passages (= rectangles 
Pk, k EN, P, symmetric with respect to the x-axis) of height much smaller 
than the height of the adjoining rooms R, and R, ~, . 

If the passages are narrow enough, the Neumann Laplacian for this 
region has 0 in the essential spectrum. For, let 4, be a function which is a 
large constant in the n th room and which drops linearly to 0 between the 
room and the midpoint of the adjacent passages. Choose the constant so 
that d, has norm 1. Since they have disjoint supports, the 4, are orthonor- 
mal. The size of l/Vd,J is proportional to the width of the passages adjacent 
to box n and that can be made arbitrarily small. 

One of the goals in this note is to actually show that for the rooms and 
passages example, the essential spectrum is exactly {0}, if the passages are 
narrow enough. Our main theorem is 

X 
‘. P 

FIG. 1. Rooms and passages. 
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THEOREM 0.1. Let S be any closed subset of [0, cc ) and let n be given. 
Then there exists an open, connected subset D of the unit ball in R” so that 

%(-4)=S and %“-~f:)=121. 

If S contains 0, we will be able to construct Sz as a modification of rooms 
and passages-essentially, we will add a partition accross each room with 
a hole in it. For general S, we will modify instead another class of regions 
known as “combs.” 

To construct combs (as shown in Fig. 2), we attach a sequence of teeth 
(i.e., rectangles of bounded length and shrinking width) to a fixed square 
Q c R*. Here it is somewhat simpler to stack the teeth together instead of 
having empty space between them. 

Basic to our entire strategy is that one can decouple into simpler regions. 
In the rooms and passages type regions, we will decouple into separate 
rooms and passages; in the combs, we will decouple the teeth of the comb 
from the handle Q. In the rooms and passages, the barriers we put in will 
have Neumann boundary conditions on the room side and Dirichlet condi- 
tions on the passage side. What we will show is that putting in such barriers 
on the infinity of room-passage joins will mean a compact perturbation of 
the resolvent so long as the passages are narrow enough (and a trace class 
perturbation on the level of squares of the resolvents). Since aPSS is left 
invariant under compact perturbations, we will reduce the determination of 
the essential spectrum to that of decoupled regions. Since each individual 

- 

l-t-t l-lhhh- 

FIG. 2. A comb domain. 
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region has discrete spectrum, the essential spectrum will be the set of limit 
points of spectra of the regions and that will be easy to compute. 

The somewhat surprising element of our decoupling is that from the 
passage side, the boundary condition is Dirichlet. We call this the organ 
pipe lemma because it is a reflection of the known fact that closed and 
open organ pipes have opposite boundary conditions. The reason that 
eigenfunctions in the passages must vanish near the boundary of the 
passage is the following: Because the passages are so small, for them to 
matter, the wave function must live in the passage and not much in the 
rooms. If these functions were not much smaller at the edge of the passage 
than in the middle, they would “leak” out into the rooms. This idea is 
made precise in Section 1, where we investigate the behavior of eigenvalues, 
eigenfunctions, and resolvents of the Neumann Laplacian on two domains 
Q, and Sz, which are joined by a passage of width u’, in the limit of u’ going 
to zero (Propositions 1.4 and 1.5). In Proposition 1.9, we deal in a similar 
manner with the situation where a family of small handles is attached to a 
fixed domain Sz,. There has been previous discussion of the effect of narrow 
passages and handles, not unrelated to our organ-pipe lemma; see Jimbo 
[11] and Arrieta, Hale, and Han [3]. 

In Section 2, we construct rooms and passages domains Q by succes- 
sively joining a sequence of rooms by narrow passages and obtain norm- 
resolvent convergence of certain approximating Laplacians H, to --AZ. As 
in Simon and Spencer [16], the spectral results then follow from the fact 
that (H, + 1 )- ’ - ( -A”, + 1) p2 is trace class. Upon replacing each room in 
the above construction by a small rectangle with a partition, each of these 
modified rooms will contribute (to the spectrum of H,) an eigenvalue 0 
plus another low-lying eigenvalue ik, while the remaining eigenvalues will 
be very large. By this construction, we can achieve to have 

ces,,( H, ) = { 0} u {limit points of { jbk} f. 

(Domains similar to a union of finitely many rooms and passages have 
been used by Colin de Verdiere [4] to specify a finite part of the Neumann 
spectrum.) 

In an analogous manner, we analyze combs in Section 3, beginning with 
simple combs of the type described above and then proceeding to combs 
with small teeth Dk where each D, has a partition (with “door”j to make 
sure that each D, contributes precisely one low-lying eigenvalue Ak to the 
spectrum of the fully decoupled comparison operator. As a consequence, 
we find that the essential spectrum of the Neumann Laplacian is given as 
the limit set of the sequence {l.k}. Since this sequence can be preassigned 
in the construction of examples, Theorem 0.1 follows. 

R. Hempel thanks D. Wales and G. Neugebauer for their hospitality at 
Caltech. 
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1. ORGAN PIPES 

In this section we analyze the Neumann Laplacian on domains consist- 
ing of two “rooms” which are joined by a’ narrow passage of width w, w 
small. It turns out that we have a natural Dirichlet boundary condition on 
the sides of the passage attached to the rooms (corresponding to the 
natural boundary condition for the pressure in an organ pipe at its open 
end). To be more precise, we will see that the resolvent of the Neumann 
Laplacian on the full domain is well approximated (in the operator norm) 
by the resolvent of a certain decoupled operator which has pure Neumann 
boundary conditions along the boundary of the two rooms and mixed 
Dirichlet and Neumann boundary conditions for the passage. 

Here a word about the definition of Laplacians with Neumann or mixed 
boundary conditions is in order. For a general open domain Q c R”, the 
Neumann Laplacian is most naturally defined via quadratic forms, starting 
from the Sobolev space Z’(a) = W1,2(Q). This Sobolev space may be 
obtained as the completion of the function space 

u-e cm(Q) I llfll xl(a) < CE ) 
under the norm I/./I, = I/ II 21Cn,, where 

llfll i@(Q) = i IfI’+ lV12. n 

Then -A”, is defined (as in Reed and Simon [ 1.5, Sect. X111.151) as the 
unique non-negative, self-adjoint operator whose domain 9( - A$) is 
contained and dense in Z’(Q), and which satisfies 

(-Af2,u,v)=(Vu,Vv), u&(-An,), vet’. 

Similarly, Laplacians with mixed Neumann and Dirichlet boundary condi- 
tions can be defined in the following way. Suppose r= rc &2 is given. Let 

be the completion of 

{“f-e Ccc(Q) I llfll X’(Q) < 003 SuPPfn l-= 0) 

and consider the unique self-adjoint operator associated with Z’:(Q); this 
operator will be said to be the Laplacian on Q with Dirichlet boundary 
condition on I- and Neumann boundary condition on &2 -K 

For u ~9( -A:), we have the a priori information UE 2’(Q) and 
Au E L*(Q), but for irregular domains it may be very hard or impossible to 
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obtain useful bounds for sup 1~1. In Lemmas 1.1 and 1.2 we shall show, 
instead, that control of the X1-norm gives certain precise bounds on 

for small rectangles S (we are in R2 now). These bounds will subsequently 
play the role of a weak substitute for a Dirichlet boundary condition in 
Lemma 1.3. 

LEMMA 1.1. Consider a rectangle R c R2, R = (0, I) x (0, h), made up of 
two adjacent suhrectangles, R, = (0,l) x (0, w) and R, = (0,l) x (w, h), 
where 0 < w < h. Then, for u E Z’(R) we have 

udxdy- & j u dx dy d (hl)“2 IIVull. 
R2 

Proof: Since C”(R) is dense in J?‘(R) and R is convex, it is clear that 
we can assume u to be P(R), without loss of generality. 

Define 

f(y) = j; 4x3 Y) dx 

and 

mz= j” f(y) dy = jRL 4x9 Y) dx &. 
PI 7 

Clearly, there are points y, E [O, w] and yVZ~ [w, h] such that 
f(y1)=m,/w,f(y2)=m2/(h-w), and it follows that 

as claimed. Q.E.D. 

The important point in the following simple lemma is to have the powers 
of w and I in the asymmetric version u’. I ‘12. 

LEMMA 1.2. Let Q = (0, r)x (0, h) and let S=(O, 1)x (0, w) (with 
0 < I < r and 0 < w < h/2) he a s&rectangle of Q. 
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Then, for u E Z’(Q) we have 

with a constant C depending on h only. 

Proof. Let 

~=W)xCwh), Q*=Suo. 

Applying Lemma 1.1 to Q*, we obtain 

with C, = h112( 1 + 2/h), and the result follows. Q.E.D. 

In the subsequent lemma we consider a passage P,. = (0, L) x (0, w) of 
fixed length L and width w 6 L, with two adjoining rectangles S, and S, 
of length E= 1,. = w112, S, = (-l,O] x (0, w), and S2 = [L, L + 1) x (0, w). 

Let -dpN denote the Laplacian on P,, with Dirichlet boundary condi- 
tions at the ends of P,. and Neumann on the long sides of P,.. Also, let 

denote the eigenvalues of - A2y, repeated according to their multiplicities, 
and let {$/I,eN denote a complete orthonormal set of eigenfunctions 
satisfying 

Clearly, any function o in the form domain of - A$, which is orthogonal 
to rl/,, . . . . )(/k satisties the inequality 

We wish to extend this property to a family of functions 
v, E X”(S, u P, u S,) which do not really obey a Dirichlet boundary 
condition, but instead, satisfy the condition 

s u,, = o(w/‘!*) as w +O. 
S, 
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LEMMA 1.3. Let kE N, he fixed. Suppose we are given a family 

t&l&l;;; 1 off unctions v,, E X’(S, u P,. u S,) which satisfy the following 

(i) llv~,.ll:~(s,“P,~“s~~’ < Co, 0 < w < 1, for some constant C,. 

(ii) (~,,.,ll/~)+O, w-+O,j=l,..., k 

(iii) iSs, v,,.I <Awl’!“, q = 1, 2, 0 < w < 1, for some constant A. 

Then, ,for any E > 0 there exists w, such that 

11v4 P,,.II%P~+, IIU,, r ~,,.ll*--~ 0 < w d w,;. 
Remark. We will apply this lemma only in cases where (v,,,, $j) = 0, 

j = 1, . . . . k. 

Proqf: Again, we may assume u,. E P(S, u P, u S,). 
On S, u P,. u S, we define the functions I? = v”,, by 

6(x, y) =; j-; v(x, z) dz. 

(Note that 6 is constant in the y-direction.) We then have 

iw r P,J* 6 IIVU r cii* 
liar ~23 110r PJ-~* Iid p,viI:. (1.1) 

In order to prove (l.l), expand u r P,. in terms of eigenfunctions of --A$’ 

v r ph.= C G(P, q)e,,,, 
P.YENl 

where ti(p, q) = (v, eP,q) and the eP,y are given by 

w -1/2L--1/2 cos (y) cos (y). p, qENO 

with normalizing factor between l/2 and 2. Clearly, 

w4r p,,.= 1 fi(~dde,,, 
P.YENl 
4+0 

and, since or P,V~X1(P,V)=A?-d2), 

II~U r P,,,II 2 = ~2 
.4:oo)(~ > 

+$ lfi(P> 4)12 
, 
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so that 

Next, assumption (iii) implies that there exist 
L<x,<L+I such that 

16(x,, y)J d Alr”2, O<Y<W. 

(1.2) 

I<x,<O and 

Let g, = 0 and l2 = L, so that 5, is the x-coordinate of the left or right end 
of P,.. We then have 

lqti, y), d2w--‘,‘4, OdY<W (1.3) 

by the following easy argument. Let hi= lu”(xi) - G(<,)\ for i= 1, 2, so that 
lG(t;, y)l Q Al-“’ + hi for 0 <y d w. Using the trivial inequality 

IS(O) -f(t)1 2 G t I if'(s)' ds, fE~'(O, t) 

we obtain 

implying 

so that hf d C,f/w, and (1.3) follows. 
Now let 4 =4(x, y) be the (affine) linear function on P, which makes 

(fi- d)(L Y) = 0, . i=l,2, O<y<w. 

By (1.3) (and since the length of P, is held fixed), we have 

llill: = ww*‘2)T w + 0. (1.4) 

As i? - 4 belongs to the form domain S?( -d 2N) and satisfies 

ICE--4, $ji>lG2& j = 1, . . . . k, o<w<w: 

(by (ii) and (1.2)) we obtain 

irw-4 r pwil~3~k+,~li~~-4~ r p,,.Ii2-4W 
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for 0 < w < w:. Using (1.1) and (1.4), it finally follows that 

for 0 < w < w!, and we are done. Q.E.D. 

We now consider two domains LZ, and 52, in R2, Q, n 52, = a, with 
piecewise smooth boundaries and (- A”,u + 1))’ compact, joined with a 
passage P, = (0, L) x (-w, w), as shown in Fig. 3. Note that we prefer P,. 
to be symmetric with respect to the x-axis, in this context. We require our 
domains 52, and Sz, to satisfy the following two conditions: 

1. P,n(.Q,uQ,)=~ 

2. (-3,0)x(-s,s)cn, and (L,L+s)x(-s,s)c!S2, 

for some s > 0. We require conditions 1 and 2 because it simplifies nota- 
tion, and because they are satisfied by the examples we try to understand. 
They could be relaxed to require only that the boundary of the domains be 
smooth (with non-zero x-derivative) around the points where the passage 
is attached, and that 852, intersects the line segment [0, L] x (0) only 
once, for q = 1, 2. 

We define Pi, = [0, L] x ( -t-v, w), 

Q,“=Q,u P;.uQ,, H,.= -A; 

and 

FIG. 3. Two domains joined by a passage. 
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Let E,, = n,(w), for i = 1, 2, . . denote the eigenvalues of H,,, 

repeated according to their multiplicities, and let { cp,} denote an associated 
orthonormal basis of eigenfunctions, ‘pi = (p;(w). Similarly, xi = xi(w), 
Qi = Qj(w) denote the eigenvalues and eigenfunctions of fi,$,. Associated with 
the 4i we also consider their extension qi~ X’(Q,,), defined as follows: 

1. If Cji is an eigenfunction of -d2N, it will be extended as 0 inside 
Q,, q= 1, 2. 

2. In the case where qi is an eigenfunction of --d$, the Sobolev 
Extension Theorem (see Gilbarg and Trudinger [ 10, Theorem 7.251) 
allows us to extend $, to a domain that contains Q, u P,,. (Note that in 
our example, since 852, n B,(O) is a straight line, a simple reflection argu- 
ment would do.) Denote these extensions by gi and let j(x) be a smooth 
function satisfying j(0) = 1 and j(L) = 0. We then define 

j-Jo& y) = { oyicx3 Y) .Ax) ;; 2 
2, 

It is clear, by dominated convergence, that 5, - Qi goes to zero in L,(Q,) 
and that llqi r P,ll X,Cp,J -, 0, as w + 0. 

The eigenfunctions of - d 2 are dealt with in the same way. 

It is our aim to show that the differences of eigenvalues Jtii(w)--Xi(w) 
(and eigenfunctions cpj(w) - @ji) go to zero as w -+ 0. To avoid notational 
difficulties in the case of degenerate eigenvalues, we consider the spectral 
families {E, } j. E n and {E, } j, t R for H,. and R,. and prove the following: 

PROPOSITION 1.4. Suppose the above assumptions are satisfied, and let 
A > 0 and E > 0 be given. Then there exists w, such that 

lIEj.(w)-Ej.(w)ll <&, o<w<w, 

for all /z <A satisfying dist(%, a(R,)) 2 E. 

Proof Let 0 = /ii < ,ZZ < . . < bk < . . denote the points of cr(fi,,,) and 
let k, E N be such that bko < A, and fik,, + , > A. Note first that for w small 
enough, j, < n + 1 and xi < /i + 1 are independent of w.’ Without loss of 
generality, we may assume that In -j&,1 > E, l/i - &,+ iI > E, and that E is 
small enough so that the 2E-balls around the points ,C,, . . . . bko do not 
intersect. 

’ Although this is not essential for the proof, it slightly simplifies the picture. 
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(A) In this part of the proof we show that, for 2 d/i, 

(i) dim 9(E,+,+,) 3 dim I; 
(ii) dim 9(E,-,) <dim .!%(E,); 

for w small (here !4?(E,) denotes the range of E,). 
Suppose 1, d . . . d x,6 I, while 2, + , > 1, so that %?(E,) is spanned by 

4,) . . . . 4P. Defining 

fi=wn{$,, . . . . $,>, 

where the qi are the extensions to all of Q, of the functions $i, we clearly 
have (for w sufficiently small) 

llw’d,+~@) 11~112, $E& 
and 

dimfi=dim9(Ej,)=p. 

Since fi is contained in the form-domain of H,, min-max implies that H, 
has at least p eigenvalues below I + E, proving (i). 

If (ii) were not true, we could find u E %‘(E,-,), Ilull = 1, u orthogonal to 
the range of .I?,, whence 

<u, 4,) = 0, i=l > . . . . P. (1.5) 

Although u will not in general belong to the form domain of fir,, we 
nevertheless conclude from (1.5) that 

llw fw3~,+1 lid aIll2 

and similarly for Q2, while combining Lemmas 1.2 and 1.3 yields an 
estimate 

ilvfd fu2aXp+, lid ~AI--E/~ 

for w small; we therefore end up with 

for w small. 

IIw2~~p+l 11412--E/2 (1.6) 

On the other hand, UE~?(E~~,) implies llVull* < (A-E) uu(12, in con- 
tradiction with (1.6) and I,+ i > ;1. This proves (ii). 

(B) Denote the points where the s-balls around the Fk, 1 6 k < k,, 
intersect the real line by x1 < ... < xj < . . . < xzkO, so that xzk = fik + E, 
X2&, = jik - s, and let x0 = - co. Defining 

580;102:2-14 
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it is evident that PI = $ = 0 (as x1 = --E and x,, = - co), and that @ = 0 for 
j odd. Applying (i) and (ii) successively at the points xj, it is easy to see 
that all eigenvalues of H,, in [0, A] lie inside the intervals (kk -8, jIk + a), 
k=l , . . . . k,; furthermore, if p E a(fi,.), p < /1, is an eigenvalue of multi- 
plicity m, then there are precisely m eigenvalues of Hi inside the Z&-interval 
centered at this ,u, counting multiplicity. 

(C) Finally, we are in a position to prove that, for w small, 

llq--lI <E, 1 djd2ko. 

There is nothing to be proven for j= 1, and we assume now that the 
assertion holds for 1, . . ..j- 1 < 2k,. By part (B) of our proof, we have 

dim 9?(q) = dim a(?). (1.7) 

If j is odd, then 4 = 0 and also 9 = 0, by (1.7), and we are done. 
If j is even, let m = dim W($,) and suppose that 1, = . . = 1, + mu I are 

in the inteval (x,- r, x,), so that A,, . . . . $+,,, _ , lie in the interval (x,- , , xj) 
while IZp+m>~P+m - E, by part (B). Then 

q= IlV,l12= IIv,II*+4)~ w + 0, 

where (noting that $, E X1(52,,) = L~(H:!~)) 

IlV$,l12 = IIH?$,ll* = j- aa’ lI~%~,ll~. -cc 

By the induction hypothesis, we know that IIEx,-,$,II 2 + 0, as w 4 0, and 
it follows that 

Letting 

d=min{Ij+&l II dk, I<kk,, kfl} 

so that &+,,, > & + d - 2~, we may conclude that 

(d-2&) I(1 -~.#,l12 

a,+&-& ll~~-~~,~,~~,l12+0(1)~E-u(1), w+o 

as ll(l-‘E,,~,)~,I12=I+o(l). This implies II~~-~~~II’~2E/d+o(l), as 
w + 0, since E <d/4. Repeating the same argument for the eigenfunctions 
qP+,, . . . . QP+,,-, and using (1.7) it is easy to see that ~~9$-~~~ <s for w 
small enough. Q.E.D. 
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Using Proposition 1.4, it is now straightforward to estimate the dif- 
ference of the resolvents of H, and 8,. 

PROPOSITION 1.5. Let H, and I?, as before, and assume that 
(-A~+1)~m~S7,, the traceclass,forq=l,2andforsomem>l. Then 

and 

ll(H,,,+ 1)-l-(ii,+ 1)-‘/l -+O, w-+0 

II(H,+I)-“-(A,~+l)-mll~,~O, w + 0, 

where 11. Ij II denotes the trace norm. 

Proof: As in the proof of Proposition 1.4, let 0 = b1 < ,ri2 < . . . denote 
the points of o(n,) and let A:(w) denote the (repeated) eigenvalues of 
-A:‘@ -A?Q -A$% By assumption, (-A? + 1))” E L&?,, and, by 
inspection, ( - A2 + 1)-M E 9Ji. Since the eigenvalues of -A: are 
monotonically non-decreasing, as w + 0, and since ni( w) > J*(w), 
x;(w) > i*(w), it follows that for E’ > 0 given, there exists n > 0 such that 
l/A <E’ and 

1 (A(w)+ I)-" +Jn (Ii(w)+ l)Y<E’ (1.8) 
i, > A ,> 

for 0 < w < s. Now let w,. > 0 so small that the xi(w) E [O, n + 1] are 
independent of W, for 0 < w 6 w,,, and suppose that p EN is such 
that x,(w) Q /i, while xp + , > A, for 0 < w < w,,. Finally, let KE N be such 
that ,iik- i <A, while ,LiK> /i. Let 0 <E <.s’ be such that the 2s-intervals 
around the points fik, k = 1, . . . . K, do not intersect, and let x2k = bk + s, 
XZk ~ i = pk - E, q. = E, - E,, , B = B, - E,+, , j = 1, . . . . 2K, as before. 

For the first statement 

Il(H,+ 1)-i-(&+ l)-‘11 d z ll.C$(H,+ l))‘-e(i?,+ l))‘ll 
j= I 

+ II ( 1 - E,,,)(H, + 1) -- ’ II + II ( 1 - ~,,,)(~+v + 1) -‘II. 

Here the last two terms are bounded by 2/1- ’ < 2s’. In the sum, the 
contributions coming from j odd are zero. For j even, j = 2k, say, note that 
(Xj- 13 X,)=@k-&, pk+&), so 

.q(A,+ l)-‘=(jik+ 1))‘3 

and 
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so that (E < l/2, without restriction) 

llq(H,.+ 1))‘~&E7,.+ l))‘ll d II+@ +2E. 

Using Proposition 1.4, it is now easy to obtain the first statement. For the 
second statement, we proceed in a similar way: 

II(H,+1)~“-(t7,.+1)~mlla,~ z II~(H,.+l)~“-~(~,+l)~~“/~,, 
j= I 

+ ll(1 -Ex,JH,.+ l)r”IIa,+ lI(1 -R,,)(R+ l)rrnll.4,. 

Here the last two terms are less than E’, by (1.8). In the sum, we again have 
to consider j even only, where we now estimate 

II9gH,+ 1)-“-8#,+ 1))“11#, 

d IIq--lIa, +2s Ilqllr31, 62 dim 9(q) I/~-~11 +2.s dim &T(g) 

Q2p Il+~ll +2~p64~p 

for w small, by Proposition 1.4, and the result follows. Q.E.D. 

On the intervals of length w, where the passage P, meets the rooms O,, 
the decoupled operator A,, has Neumann boundary conditions from the 
side of the rooms and Dirichlet boundary conditions from the side of 
the passage. As we will see now, we might as well decouple with a pure 
Dirichlet boundary condition on these intervals. In view of later applications, 
we consider ‘the Neumann Laplacian on a domain !C2 and investigate the 
influence of a Dirichlet boundary condition on the interval 

Z, = [0, S] x (0) c R2, 6 3 0; 

note that we do not require I, c 80. We have: 

PROPOSITION 1.6. Suppose 52 is an open subset of R2 with (-A”, + 1) - ’ 
compact. Let -A& denote the Laplacian on 52 - Ib, with Dirichlet bound- 
ary condition on I,, and Neumann boundary conditions on the remaining 
portions of Xl. Then, given E > 0, there exists 6, > 0 such that 

IIt-A&v +l)-‘-(-d;+l))‘II<&, 0<6<6,. 

Proof: Suppose we associate the objects E,,, cp,, ,uk, E, with the operator 
-AZ, and xi, etc., with -A&,, as in the proof of Proposition 1.4. While 
the basic strategy of proof is the same as the one leading to Proposi- 
tions 1.4 and 1.5, we now use the ,uk’s instead of the jik’s as reference points, 
the pLk being independent of 6. Furthermore, there are substantial 
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simplifications in the details; in fact, we shall need neither Lemma 1.3 nor 
the extension process 4, H qi. In particular, the estimate 

dim 9I?( E,) 2 dim W( E,), AER 6) 

is now an immediate consequence of the fact that -A”, < -A&, in the 
sense of quadratic forms. Let E > 0. To obtain the estimate 

dim B?(E,) <dim B(E,+,), 2. < A (ii) 

for 6 small, suppose that cpi, . . . . ‘pp span B?(E,). Applying Lemma 1.7, 
below, to cp,, . . . . ‘pp, we obtain functions $i, . . . . I,+,, E 9( - A$,,,) which 
satisfy 

Letting M = span { $ , , . . . . $,}, we again see that dim M = p and that 

llW2 d (1” + E) 11412, UEM 

for 6 sufficiently small, and (ii) follows. This corresponds to part (A) of the 
proof of Proposition 1.4. Applying the above estimates successively to 
the points pk + E, we see that the eigenvalues of -A& lie in the 
s-neighborhood of the eigenvalues of -A$. The argument given in part 
(C) of the proof of Proposition 1.4 is slightly simplified as @,, E 9!( -A:), so 
that the proof can start from 

The rest of the arguments used in proving Propositions 1.4 and 1.5 remains 
basically unchanged. Q.E.D. 

LEMMA 1.7. Let Sz c R2 open and UE Y’(Q). Then, there exists a 
sequence {un> c 3?‘(Q) such that u, vanishes on the ball of radius l/n, 
centered at the origin, and /Iu - u,II 1 -+ 0 as n -+ 00. 

ProoJ For E > 0 given, there exists M>Q such that the function 
U~ME A?“‘(Q) given by 

u.dx, Y) = 
1 

4x9 Y) if lu(x, y)l GM 

4x> YMX~ VII otherwise 

satisfies u,,, E Si(sZ) and JIu - uJJ, <a. (This follows easily from the chain 
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rule (Gilbarg and Trudinger [ 10, Theorem 7.81) via dominated con- 
vergence.) 

Now, let (PE C”(R*) enjoy the properties Obq< 1, cp(x, y)= 1 if 
x2 + y* > 4, and cp(x, y) = 0 for x2 + y* < 1. Also, define 

(Pkk Y) = cpuw ky), kEN. 

From 

and IlVcp k~,,,)II < const., it follows that there exists a sequence {ki) c N 
such that (pk,uM+ uM weakly in X”(sZ). Therefore, the Banach-Saks 
theorem implies that 

if (Pk,“M + uM~ strongly in X’(a) 
J=l 

as N + co, and the result follows. Q.E.D. 

This concludes the preparations needed for Section 2. We note at this 
point, that our proofs can be easily modified to obtain results similar 
to Propositions 1.4-1.6 in dimensions n > 1 (the condition m > 1 in 
Proposition 1.5 then must be replaced with m > n/2). 

For the construction of various combs in Section 3, we shall need 
variants of Lemma 1.3 and Propositions 1.4 and 1.5 adapted to the situa- 
tion where a thin “tooth” or handle is attached to a given domain. In view 
of Theorem 3.7, we will allow for the handles to be slightly more general 
than mere rectangles. 

We begin with a variant of Lemma 1.3, dealing with a family of handles 
D,, 0 < w < w0 < 1, which are of the following type: for 0 < w < wO, each 
D, is a bounded, open, connected subset of the right half plane in R*, 
satisfying 

D,n{(x,y)~R210<x<~}=(0,~)x(0,w), o<w<w,. (1.9) 

(This means that D, begins with an actual rectangular handle on the 
left-hand side.) Letting - A2, denote the Laplacian on D, with Dirichlet 
boundary conditions on (0) x [0, w] and Neumann boundary conditions 
everywhere else, we require that ( - Acy + 1)) ’ is compact. 

Also,. let 0 < ,~r < . . . < pJ d . . . denote the (repeated) eigenvalues of 
Dw , with associated normalized eigenfunctions $. j = 1, 2, . . . . Finally, 

ieALtd the adjoining rectangles S, = (- &, 0] x (0:‘~). 
With the above notation and assumptions we have the following lemma. 
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LEMMA 1.8. Let kENO, w,, > 0, and suppose we are given a family 

hd 0 < ,,,< wg, with v, E X’(D,,, u S,) satisfying the following conditions: 

(i) /IuwIl .vlcD,u s,j d C for 0 < w 6 w0 and some constant C. 

(ii) (1//1,~,~)-+0, as w+O, forj=l,..., k. 

(iii) IjS, uJ d Aw5j4, for some constant A and 0 < w f wO. 

Then, for any E > 0 there exists w, such that 

ProoJ: The simple averaging used in the proof of Lemma 1.3 has to be 
relined. We write v = v,$,, 1= $, and use the notation 

h,=(-1,1)x(0, w)cR2 

e,,,(x, y) = cp,q cos ““il+ ‘) cos y, (x3 y)Ehw 

for p,qENo and suitable normalizing constants c,,~; also, Put 1 
vP4 = (v, ep,q). Writing 

we now define, for (x, y) E D, 

w, Y) = 
{ 
4x3 Y), X>Jw 

Uo(x, Y) +4&v(x) Ul(X, Yh -&<X<&, 

where ~,(x)E C?(R) is such that q5Jx) = 1 for x> ,/%, d,(x)=0 for 
x<O, O<qS,< 1, and max Id’,1 <2~-‘/~. 

As in the proof of Lemma 1.3, the assumption llVul12 6 C implies 
II U, 11’ = O(w2) for w small, so that IIv - fill --+ 0. To estimate IIV6ll 2, we first 
observe that 8, U. = 0, so that 

On the other hand, looking at the x-derivative a,iY= a,U, + d’,(x) U, + 
4wwax u,, we first note that 

s I&(x)l’ IU,12<max l&l2 IIU,)12<Cw~1w2. 
h, 
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Furthermore, as q = 0 in U,, and q 2 1 in U,, Fibini’s theorem implies 
(a, U,,, a, U1 ) = 0 and it follows that 

j h,. Wl’=j h, l~,Uo12+ s,,, 14w4x)12 l&u,12+o~‘~2) 
< 

s 
Jd,u12+ o(w1’2). 

h, 

We therefore conclude that IIVY”\\* d llVul12 + O(w”‘). The rest of the proof 
is similar to the proof of Lemma 1.3; here, however, we will have to 
subtract from i7 a piecewise linear function which is 0 for x 2 &, Q.E.D. 

We now join handles of the type described above to a fixed domain 
52cR2, where we assume that 

for some s0 > 0, and 

QnD,=@, O<w<wo. 

We will also require 

D, n {(x, y) IO < x < w"~} = (0, WI/~) x (0, w) 

which implies ( 1.9), for w < 1. 
Now, letting 0, = R u D:, where D’, = D, u ((0) x (0, w)), we define 

H,= -A?and A,,,= -A~@ -A2N. Also, let n,(w), i=l,2 ,..., denotethe 
eigenvalues of H,, repeated according to multiplicity. We have 

PROPOSITION 1.9. In addition to the above assumptions, suppose that 
(-A”, + 1))2 E 33, and that, more strongly, 

uniformly for 0 < w < w,,. Finally, assume that, for any A > 0 given, the 
eigenvalues of - Af& in [0, A] are independent of w, for w small enough. 

Then, as w + 0, 

II(H,+l)~‘-(A,+l)~‘II +O 

and 
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Proof: Using Lemma 1.8 in place of Lemma 1.3, we closely follow the 
strategy of proof which led to Propositions 1.4 and 1.5. Note that D, now 
has a rectangular handle (0, w1j4) x (0, w), so that we can use the old exten- 
sion and cut-off process to extend the eigenfunctions @ji of A, to functions 
I$~ defined on all of Sz,,, $i~&?‘(sZ,,.), and such that ll$;r D,JJulcn,., --NO, 
as w + 0. Q.E.D. 

Remarks. (a) The assumption that the eigenvalues of -Af& in any 
interval [0, A] be independent of u’, for u’ small, is very restrictive. 
However, it is easy to see that the proof of Proposition 1.9 can be modified 
to cover the situation where, for any i, the eigenvalue x,(w) of -A::, 
converges to some limit Ii, as u’ -+ 0, with 1:; + a as i + co. 

(b) Some related results on shrinking handles attached to a fixed 
domain can be found in Courant and Hilbert [S, p. 4201 and in Arrieta, 
Hale, and Han [3]. 

2. ROOMS AND PASSAGES 

In Section 1, we considered the Neumann Laplacian on domains con- 
sisting of two rooms, joined by a narrow passage. We now analyze the case 
where an infinite number of rooms are joined by narrow passages and we 
determine the essential spectrum of the associated Neumann Laplacian. 
More specific results will be obtained by choosing the rooms to be either 
rectangles (Corollary 2.2) or rectangles with a partition (Corollaries 2.4 
and 2.5). Rooms with partitions are particularly useful in attacking the 
inverse problem 

Given a closed set S c [0, cc ), does there exist a bounded 
connected domain Sz c R2 such that oess( - A$) = S? UPI 

We now define the general setting for rooms and passages (cf. Fig. 4). 
Suppose we are given two bounded, strictly increasing sequences {xk}, 

{XL} c [0, co) which interlace in the sense that xk <XL <xk+ ,, for 
k = 1, 2, . . . . We also assume x, = 0, for simplicity. For k = 1, 2, . . . . let 
R, c R2 be open sets satisfying the following three conditions: 

(-A$ + 1))2 is trace class 

&C ((~3 ~)lx,<x<x;) 

aR,nB,,((x,,O))=(x,)~(-&~,&~), 

a&n 4,((4,0)) = {xi> x (-G, -Q) 

(2.1) 

(2.2) 

(2.3) 
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~~~~~~~~ x 
- Pk+l ---m 

FIG. 4. The construction of rooms and passages. 

for some .sk > 0, where B,,( (x,, 0)) denotes the ball of radius sk centered at 
the pont (x,, 0). Conditions (2.2) and (2.3) in particular imply that the 
right half of BEk((x,, 0)) and the left half of B,,((x;, 0)) are contained 
in R,. 

We then define the kth passage, joining R, with R, + , , by 

Pk=Pk(Wk)=(X6,Xk+I)X(--k, Wk), O<~~<rnin{~~,~~+~}. (2.4) 

While the rooms R, may be considered as being fixed, the widths wk will 
be determined later on. For a sequence {wk) satisfying the requirements in 
(2.4), we now define the rooms and passages domain Q by 

(2.5) 

where P~=[x~,x,+,]x(-w,, wk). Also, define the domains obtained by 
joining the first IE rooms 

SZn=52,,({wk)k=1,.,.,,-1)= u (Rkuf%)u& (2.6) 
k=l 

and the approximating operators 

H,=H,({Wk}kEN)= -AR,‘@ g (-A2N@ -A?“) 
( > 

(2.7) 
k=n 

il,=R,({wk}kE,)= -A$@ 6 (-A2N@ -A$+l) 

( > 

. (2.8) 
k=n 

Here the boundary conditions for - A2, are as in Section 1, while the 
Laplacian - A$ obeys Dirichlet boundary conditions on the line segment 
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where the passage P, meets Q,, and Neumann conditions on the remaining 
parts of the boundary aQ,. Similarly, -d 2N has Dirichlet boundary condi- 
tions on the line segments where the passages P,- i and Pk are attached, 
and Neumann boundary conditions on the rest of aR,. Hence A,, is the 
Neumann Laplacian on Q, with all but the first n rooms and all but the 
first n - 1 passages decoupled by pure Dirichlet boundary conditions. 
(Note that the meaning of the “-” differs from Section 1.) 

The fundamental result of this section reads as follows. 

THEOREM 2.1. Suppose we are given R, c R2, k = 1, 2, . . . . satisfying con- 
ditions (2.1)-(2.3). Then, there exists a sequence of positive numbers wk, 
wk + 0 as k -+ CD, such that the Neumann Laplacian on Q = Q( { wk}) enjoys 
the following properties: 

(i) a,,(-dR,) = @. 

(i) a,,,(-d~)=a,,,(O,“=,-d~)=n.., (UkanC~?))C’osure. 

Remarks. (a) Any isolated point of gess( - dz) is an eigenvalue of 
infinite multiplicity or an accumulation point of eigenvalues. In particular, 
if 0 is an isolated point of (T,,,( --AZ), then it is necessarily an accumulation 
point of eigenvalues. 

(b) The result of Theorem 2.1 holds true for all sequences {wk} 
which tend to 0 fast enough; cf. Theorem A.1 in the Appendix. 

(c) It has been known for some time that rooms and passages 
examples may have a non-compact embedding of X’(Q) into L,(Q) (cf. 
Courant and Hilbert [6, p. 521]), in which case the essential spectrum of 
the Neumann Laplacian cannot be empty. More recently, Amick [2] and 
Evans and Harris [7,8] analyzed various fundamental properties of rooms 
and passages type domains related to Poincare’s inequality and the 
measure of non-compactness of the embedding of X”(Q) into L,(Q); they 
also determined the bottom of the essential spectrum in some cases. 

Proof of Theorem 2.1. (A) We first show that we can find a sequence 
{ wk} of positive numbers such that 

ll(ff*+ 1)-‘-w,+, + I)-‘II G$ ll~~,+1)~~-~H,,+~+1)-~ll~,~~ 

(2.9) 
and 

(2.10) 

holds, for all n = 1, 2, . . 
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To achieve this, we first apply Proposition 1.6 to all the rooms R, to 
obtain a sequence { Wk}, Wk > 0, such that 

(2.11) 

provided 0 < wk < Gk (recall that -AZ, obeys Dirichlet boundary 
conditions on the line segments {xk} x (- wkp i, wkp i) and on 
1x;> x t-w,, Wk)), 

We now proceed by induction. For n = 1, (2.10) follows directly from 
(2.11), as H, and R, are fully decoupled. By Proposition 1.5, we can find 
0 < w, d W,, such that (2.9) holds for n = 1. (Note that for H, as well as for 
H, the rooms R,, k 3 3, are decoupled.) Now supose that 0 < u; d W,, 
j = 1, . . . . n - 1, have already been found. We then employ Proposition 1.5 to 
join Q,,, P,, and R,,+, together: Again, since the rooms R,, k > n + 1, are 
decoupled for H, as well as for H, + i, in order to control (H, + 1) ~ ’ - 
(I-f,+ I + 1) - ’ it is enough to estimate 

(-A?@ -,2’-n)@ -Afy” + I)-‘-( -,@$+I + I)--’ 

and therefore Proposition 1.5 provides us with a 0 < w:, < W, such that (2.9) 
holds for 0 < w, < w;. Applying also Proposition 1.6 to Q,,, we can find 
0 < w, < w: such that 

(B) Now we fix a sequence {wn} which meets all the above 
requirements. Clearly, the form domains s( A,,) = g(R!,“) satisfy 

~(ti,)~~(~Tn+,)c~l(sZ)=~(-A~) 

for all HEN, and, by Lemma 1.7, they exhaust X”(0) in the sense that 

G L?(f?,) is dense in X’(Q) 
lI=N 

for all NE N. Since these quadratic forms are given by l/Vull 2, for u E s(fin) 
or u E .Z!( -AZ), we may conclude that tf, -+ -A”, in the strong resolvent 
sense, by standard convergence theorems for quadratic forms (cf., e.g., 
Kato [ 12, Theorem VIII-3.6 or Theorem VIII-3.1 1 ] or Reed and Simon 
[13, Theorem S.161). 

Combining this result with (2.9) and (2.10), we see that H, -+ -A”, in 
the norm resolvent sense, and that 
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so that CJ~~( - dz) = a,,(H,) by Kato-Birman theory (see, e.g., Reed and 
Simon [ 14, p. 30, Corollary 31) and gess( - AZ) = aess(H,) by a theorem of 
Weyl and the spectral mapping theorem. Now, since H, is the fully 
decoupled operator, with Neumann boundary conditions in the rooms and 
Dirichlet-Neumann boundary conditions in the passages, it is clear that 
aac(ffl) = Izr and 

fless(ff1) = oess (j,-A?). 

(Note that the operators -A$N cannot contribute to aess(H,) since the 
bottom of their spectrum goes to m, as k + GO.) This completes the proof 
of Theorem 2.1. Q.E.D. 

We now consider more specific R, and begin with classical rooms and 
passages where each R, is a rectangle. Let 

R, = (x,, 4) x (+k~ hk) (2.12) 

for some bounded sequence {qk}, qk > 0. As /xk - $1 -+ 0, k -+ 00, it is easy 
to see that 

oess (5, -A?) = (0)~ {m*n*5rlm~N, crd}, 

where 

Z= {limit points of {v;‘}} (2.13) 

and we obtain the following result: 

COROLLARY 2.2. Suppose the rooms R, are given by (2.12), with {qk} a 
bounded sequence of positive numbers. Let Z be as in (2.13). Then, there 
exists a sequence of widths {w,}, wk + 0, such that the Neumann Laplacian 
on Q = o( { wk} ) satisfies 

~~(-df:)= {O}UX* fi m2X. 
m=l 

Remark. By Theorem A.1 in the Appendix, Corollary 2.2 can be 
generalized to hold for all sequences { wk) which go to zero fast enough. 
We believe that the result holds true if wk -+ 0 at some exponential rate 
while the other quantities behave polynomially. 

Corollary 2.2 determines the essential spectrum of the Neumann 
Laplacian on typical rooms and passages (for very narrow passages). 
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FIG. 5. A room with partition 

However, due to the somewhat special structure of the set U,“= 1 m2C, it 
does not provide a really satisfactory answer to the inverse problem (IP). 
While the best answer to (IP) will only be obtained by the construction of 
modified combs in Section 3, we shall now make some progress by 
replacing each room R, by a small square room with a partition leaving 
open a “door”, as shown in Fig. 5. 

These “double rooms” R, of side length kP2 will be chosen in such a way 
that -A$ has an eigenvalue 0, one low-lying eigenvalue less than n2k4 
(which can be adjusted by choosing the width uk of the “door”), while the 
remaining eigenvalues are larger than n2k4 In fact, we have the following 
lemma. 

LEMMA 2.3. For I > 0 and 0 d p < I, consider the open set in R2 

Q(~;P)=((-~,~)u(~,~))~(-~,~)u({~}~(-P,P)). 

Then, for any ,u E (0, n2/412), there exists p E (0, I) such that the (repeated) 
eigenvalues Aj(p), j= 0, 1, 2, . . . . of the Neumann Laplacian on Q(l; p) satisfy 

&(P) = 0, iI(P)=P> I.,(P)>% (j22). 

The proof of this lemma will be given at the end of this section. In the 
construction of rooms and passages, let us now assume that Ix; - xkl = kp2 
and that each room Rk is replaced by fi,, where & is a square with a 
partition, leaving open a door of width akr as shown in Fig. 5. We then 
have: 
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COROLLARY 2.4 (Modified Rooms and Passages). Let l,(a,) denote the 
first non-zero eigenvalue of -A?. Then, for suitably chosen widths wk of the 
passages P,, the Neumann Laplacian on Q = sZ( { wk}) satisfies 

gess( -AR,) = (0) u accumulation points of (AI(ak 1 

An immediate consequence is the following inverse result: 

COROLLARY 2.5. For any closed set SC [0, CQ), there exists an open, 
bounded, connected set Q c R2 such that 

oess(-A;)={O}uS. 

In Section 3 we will construct examples which do not necessarily have 0 
in the essential spectrum. 

Proof of Lemma 2.3. We first exploit the monotonicity of the Sobolev 
spaces X”(Q(l; p)) with respect to p, 

s’(Q(t ~‘1) = =@(QU; PI), Odp6p’dl 

to conclude that lj(p)QAj(p’), forj=O, 1, 2, . . . and O<p<p’<l. 
For p = 0, we clearly have 

so, by monotonicity, 

7r2 
MP) 3 MO) = $3 Odpdl. 

Since n,(O) =0 and J,(l) = 7r2/412, the result will follow if we can show that 
I,(p) depends continuously on p E [0, I]. 

To prove continuity at 0, we choose a function $ E C”(R’), satisfying 

and let 

I(/(& Y) = 1, xz+y2>4 

w4 Y) = 0, -l<y<l 

$0(x, Y) = $(p-‘x, P-lYh p > 0. 

Letting xR and xL denote the characteristic functions of the right and left 
portion of Q(f; 0) respectively, we define 

c/l = $0. (XR - XL). 



474 HEMPEL, SECO, AND SIMON 

We have that ii, is orthogonal to the constant functions, ii, E X’(Q(l; p)), 
I(Vz7,II < const, and c, -+ xR - xL in L2, as p + 0. Thus, for a suitable 
sequence {pj } converging to 0, we have ii, + xR - xL weakly in 
%‘(Q(l; 0)), and the Banach-Saks theorem yields that the averages 

V ; 5 4, N=- 
,=l 

converge to xR - xL, strongly in YF”‘(Q(1; 0)). Therefore, given E > 0, we can 
find a function w, of norm 1, w, E 9’(Q(l; p)), for small p, satisfying 

IIVwell <G w,=o. 

This proves A,(p) < E for p sufficiently small. 
Continuity of I,(p) in 0 <p d I follows by monotonicity and a simple 

dilation argument. Q.E.D. 

3. COMBS 

We now apply the techniques of Sections 1 and 2 to Neumann 
Laplacians on comb-like domains. Our combs are constructed by attaching 
an infinite number of thin “teeth” (rectangles) of finite length to a fixed 
square forming the basis of the comb; each tooth plays the role of one 
room and one passage simultaneously. In the second part of this section, 
we shall produce combs with more sophisticated teeth (teeth of shrinking 
size with partitions, similar to the double rooms in Section 2), which 
provide a complete answer to the inverse problem (IP) of Section 2. Each 
of the teeth with partitions will contribute to the spectrum of the decoupled 
comparison operator precisely one low-lying eigenvalue which again can 
be adjusted by choosing the opening of the “door,” while the remaining 
eigenvalues will be very large. 

We first describe ordinary combs. 
Let the basis (or the “handle”) of the comb be the set 

Sz, = (0, 1) x ( - LO) c R2 and suppose we are given a bounded sequence 
{qk} of positive numbers. The v], give the length of the kth tooth, 
k = 1, 2, . . . . The width wk of the kth tooth will be determined inductively. 

Suppose { wk} is some sequence of positive numbers such that C wk < 1. 
We then denote the initial x-coordinate of the kth tooth by 

k-l 

ak := 1 wj, k= 1, 2, . . 
j= I 
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and the total width occupied by teeth as 

A= f wk. 
k=l 

(3.21 

For the kth tooth, let 

D, = (a,, uk + wk) x (0, qk), D; = tak, uk + wk) x co, qk). (3.3) 

The comb domain is then given by 

(3.4) 

while the approximating comb with only the first II teeth left, is given by 

!2,=Q,u (3.5) 

As in the rooms and passages example, we will also need two kinds of 
approximating operators, 

ET,,= -A?+-A%), n~No (3.6) 

and 

where the boundary conditions are chosen in the following way: - A”,ry has 
Dirichlet boundary conditions on the line segment [a,, uk + wk] x (0) and 
Neumann boundary conditions on the rest of cYD,; -A2N has Dirichlet 
conditions on the line segment [an+ 1, A] x {0}, and Neumann boundary 
conditions on the remaining portions of 82, (cf. Fig. 6 below). In par- 
ticular, all the teeth are decoupled from the basis Q, for the operator H,. 
Similarly, for wr, . . . . W, given, -A:;, will denote the Laplacian on Q,, with 
Dirichlet boundary conditions on the line segment [a,, r, a,, r + S] x (O}, 
forO<6<1-a,,, and Neumann boundary conditions on the rest of 22,. 
Note that, for fixed (ylk}, the domains and operators defined above will 
depend on the sequence {w,}. 

PROPOSITION 3.1. Suppose wl, . . . . w, are given, with wk > 0, for 
k = 1, . . . . n, and C;= I wi < 1. Then there exists 3, + , > 0 such that 

lI(H,+l)-‘-(H,+,+l)~‘IIdl/(n+l)*, n>O (3.8) 

ll(ffn+ l)p2-(Hn+, +1)~211.‘B~~l/(n+1)2, n>O (3.9) 

5SO/lO2/2-I5 
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FIG. 6. The line segment [(I,+ ,, A 
tions. 

x (0) where -A$ has Dirichlet boundary condi- 

provided w, + , < i6)n + , , for any choice of w, + 2, w, + 3, . . . . hut still assuming 
Cw,<l. 

Proof. Since the teeth D,, 2, D,,, 3, . . . are decoupled for H, as well as 
for H,+,, it is enough to compare (-df2,.@-A$$I+l)-’ and 
(-AR,“+’ + l))‘, and the result will follow if we can show that the assump- 
tions of Proposition 1.9 are satisfied: Clearly, the small eigenvalues on the 
teeth are independent of w, for w small, while Neumann bracketing yields 
that ( - A$ + 1) p2 is trace class. Q.E.D. 

We also have to consider the difference between the resolvent of H, 
and !I?,. 

PROPOSITION 3.2. Let n 2 1 and suppose wl, . . . . w, are given, with wk > 0, 
for k = 1, . . . . n, and C wk < 1. Then, there exists 6, > 0, such that 

1l(H,,+l)-‘-(~,+l)~‘ll~~ (3.10) 

for any choice of w, + 1, w, + 2, . . . . provided &, n wk < 6,. 

Proof: Since the teeth D, + r, D, + 2, . . . are decoupled for H, as well as 
for A,,, it is clearly enough to ensure the existence of a 6, such that 

IIC-A$+ 1)--‘-(-d&+ 1)-111 G-.$ (3.11) 
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for all 0 < 6 f 6, (recall the definition of -d”,aN, given at the beginning of 
this section). Hence the desired result follows from Proposition 1.6. Q.E.D. 

Again, the form domains .S!(fi,) are non-decreasing and they exhaust 
%“(&Z?), the form domain of -dz, in the following sense: 

PROPOSITION 3.3. Let {wkj b e u sequence of positive numbers with 
z wk < 1. Then U,“=, 9(1?,) is dense in X’(Q), for NEN. 

Proof: Let u~X’(0). Lemma 1.7 provides a sequence {u,}~X’(a) 
such that I/u - ~~11, + 0 and u,(x, y) = 0 for (x, y) in the ball of radius l/k, 
centered at the point (A, 0). Hence uk E 2( A,,), for n sufficiently large, and 
the result follows. Q.E.D. 

We are now ready to put the pieces together. 

THEOREM 3.4. Suppose we are given a bounded sequence of lengths ink), 
nk > 0. Then there exists a sequence { wk} of widths, wk > 0, such that the 
Neumann Laplacian on the domain Q = 52( {qk}, {w,}), defined as in 
(3.1))( 3.4), enjoys the following properties: 

(i) - Af: has no abslutely continuous spectrum. 

(ii) oess( -A:) = x2 U,“=, ((2m + 1)/2)2 Z, where 1 is the set of limit 
points of the sequence {yl;*}. 

Remark. Fleckinger and Metivier [9] consider a class of combs with 
compact ( -A, + 1) ~ ‘, and derive results on the asymptotic distribution of 
eigenvalues. Note that the comb shown in Fig. 2 has no essential spectrum. 

Proof By Proposition 3.1, we can find some w, > 0 such that (3.8) and 
(3.9) hold. Using Propositions 3.1 and 3.2 we then choose wk > 0 induc- 
tively, making sure that (as we pass from k to k + 1) 

(i) wk + , < CCk + 1 with CC, + i as in Proposition 3.1, 

(ii) C:=+: w,<~~=,w,+~,fors=l,..., k, 

with 6, as in Proposition 3.2. (The meaning of condition (ii) is the 
following: If w, , . . . . w, have been defined, then Proposition 3.2 imposes the 
restriction Ck,J wk < 6,s, and this is for s= 1, 2, . ...) Hence, for this 
sequence (wk}, (3.8) and (3.9) hold for all nEN. 

As l?n>&+l 3 ... > 0, we may use Proposition 3.3 and Kato [ 12, 
Theorem VIII-3.6 or Theorem 3.111, to conclude that Z?, + -A”, in the 
strong resolvent sense. It follows by (3.8) and (3.9) that H, + -A”, in the 
norm resolvent sense, and that 

(H,+ 1))2-(-A”,+ 1)-2~G?1 

so that oess( -A:) = oeSS(Ho) and (T,,( - AZ) = o,,(H,). 
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Again, it is evident that o,,(H,) = 0 and 

~txs(~o) = aess (j, -a) 

= {(Pm+ 1)/2) 2~2aIm~N,, cr~2’) 

and we are done. Q.E.D. 

In order to arrive at a full solution of our inverse problem (IP), we now 
modify the comb construction, using teeth of shrinking size with partitions 
of the following precise type. 

For w > 0 and 0 < y < \v, the tooth D(w, y) is a rectangle of height 
w + w1/4 and width w, with a horizontal partition at height ~1”~ which 
leaves open a door of width 7 (cf. Fig. 7). In the actual construction, we 
will attach a sequence of such teeth to Sz,, = (0, 1) x (- l,O). Again, let 
- Azp” denote the Laplacian on D(w, y) with Dirichlet boundary condi- 
tions on the bottom and Neumann boundary conditions on the remaining 
parts of the boundary. We will use the following analogue of Lemma 2.3 to 
determine the parameter y in the further construction. 

LEMMA 3.5. Let 0 <p, d ... < ,u, < ..., p, = p!(w, v), denote the 

(repeated) eigenvalues of - A gpY’, forO<w<l andOdy<w. We have: 

(a) pi(w,y)3pi(w,0),for ~EN. Znparticular, p2-+~ as w-+0, and, 
more strongly, xi, z (p, + 1) ~ * + 0 as w + 0, uniformly in 0 < y < w. 

FIG. 7. The tooth D(w, y). 
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(b) Suppose ,I > 0 is gioen, and wL > 0 is such that p2(w, 0) > %, for 
0 < w < wj,. Then, for any 0 < w d U’j., there exists a y = y(w, A) E (0, w) such 
that 

The proof is similar to the proof of Lemma 2.3. 
Suppose now we are given a sequence (;lk} c (0, co). The preceding 

lemma enables us to find Gr >O and functions yp(w), defined for 
O<Wbl.Tk, such that the first eigenvalue of the Dirichlet-Neumann 
Laplacian on D(M’, ~Jw)) is just i,, whereas the second eigenvalue is 
greater than k. We denote these families of teeth by DJw), 0 < w d $k. (In 
fact, in the actual construction of combs, we will use translates of these D,, 
but we will not make this explicit in the notation.) 

Next, we define the objects ak, Sz,, 52, H,, and B,, as in (3.1)-( 3.7), with 
the only difference that each tooth is now a set Dk(w), translated in the 
x-direction by an amount of ak. Clearly, statements and proofs of Proposi- 
tions 3.2 and 3.3 apply essentially unchanged. By Lemma 3.5(a), and since 
PI( -A ?A”‘)) = j.,, by construction, we are in the position to apply Proposi- 
tion 1.9 (also note that, by Neumann bracketing, ( -A? + l)- 2 is trace 
class, for all n), and we obtain the estimates (3.8) and (3.9) of Proposi- 
tion 3.1. This leads to the following main result. 

THEOREM 3.6. Suppose we are given a sequence {Ak} c (0, co). Then 
there exists a bounded, open, connected set Q c R2 such that oac( -A%) = Qr 
and 

o,,,( - AZ) = {limit points of (Ak}}. 

Proof Again, we use (analogues of) Propositions 3.1-3.3 in order to 
find a sequence { wk} of positive numbers so that all the estimates 
(3.8)-(3.10) hold. 

As before, if, 3 fi ,,+ , 3 . 3 0, and so Proposition 3.3 combined with 
the usual convergence theorems for quadratic forms implies that 
H,,+ -A; in the strong resolvent sense. By (3.8))(3.10) this yields 
H,, -+ -AZ in the norm resolvent sense, and 

(H,+ 1)P2-(-AR,+ l))2~gr. 

Hence, gac( - AZ) = cac( H,) = 0 and 

r~~J-d;)=a,,, 6 -A$$“” 
i k=l > 

= {limit points of {%k} ) 

and we are done. Q.E.D. 
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It is clear that we can construct D as small as we please, without chang- 
ing the result of Theorem 3.6. This leads to the following solution of the 
inverse problem (IP). 

COROLLARY 3.7. For any closed set S c [0, co), there exists a bounded, 
connected set Q contained in the unit hall of R2, such that 

cJess(-A;)=S. 

APPENDIX 

In this appendix, we discuss the main modifications needed in Proposi- 
tions 1.4 and 1.6 to derive the following stronger version of Theorem 2.1. 

THEOREM A.l. Suppose we are given a sequence of open domains 
R, c R2, k = 1, 2, . . . . which satisfy conditions (2.1))(2.3). Then there exists a 
sequence (I?~} of positive numbers such that 

c3&ARN)=12(, aess( - A ;I = oess (5, -A?) 

for any sequence ( wk} satisfying 0 < wk d W,, k E N, where Q = Q( { wk} ) is 
given by (2.5). 

We shall need the estimates provided in Propositions 1.5 and 1.6 in a 
form which is largely independent of the domains involved, in the sense 
that w, can be chosen simultaneously for a family of domains QF’, 
0 < t < 1, q = 1, 2. In the sequel, let B, denote the ball of radius p, centered 
at the origin in R2, for p > 0. 

LEMMA A.2. Consider a family of domains Q(l), 0 < t < 1, Qcf) contained 
in the left half-plane in R2, satisfying 

(-so, 0) x (-so, so) c Q(“, O<t<l 

for some s0 > 0. Then, for any M > 0 there exists a C > 0 such that 

for any normalized eigenfunction $ of -A$” associated with an eigenvalue 
I<M. 

Proof Let tE [0, 11, I < M, and suppose $ E 9( - A$“) satisfies 
11$11 = 1 and - A:“‘$ = All/. Reflection along the y-axis yields a function 
$ E ti’(B,), which is a weak solution of -A$ = @ in B,, for 0 <s < sO. 
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The desired result then follows by repeated use of the a priori estimates 
given in Gilbarg and Trudinger [ 10, Theorem 8.101, and an application of 
the Sobolev embedding theorem. Q.E.D. 

We now join two families of domains Szi” and !C2!) by a narrow passage 
P’,. = [0, L] x ( -u’, w). In view of Lemma A.2 we require 0:‘) to be of the 
type described above, while the domains Szy) should lie to the right of 
{L} x R and should contain the set (L, L + sO) x ( -so, so). We furthermore 
require the operators (-A:!’ + 1))’ to be compact, for q = 1,2 and 
0 < t d 1. Again, let j,l” and XI (I) denote the (repeated) eigenvalues of 

where 

and of the decoupled operator 

fi”‘= -A+@ -Apw @ -A@ 
I( N DN N 9 

respectively, where the mixed boundary conditions on the passage are 
chosen as in Section 1. Let {E$.“}, {,?y)} denote the spectral families 
associated with H(‘) and A(‘) H’ ~, , respectively. We have 

PROPOSITION A.3. In addition to the assumptions made above, suppose 
that for any A > 0 there exists a constant C, such that 

Then, for any E > 0, there exists w, > 0 such that 

for all 2 d A which satisfy dist(& a(fiE))) > E. 

Proof: Using Lemma A.2, we are in a position to control the extension 
process 4, I-+ si, described just before Proposition 1.4, in a t-independent 
way: We obtain 

uniformly in t. The rest of the proof is similar to the proof of Proposi- 
tion 1.4. Q.E.D. 

It is now easy to obtain the following generalization of Proposition 1.5: 



482 HEMPEL,SECO, AND SIMON 

PROPOSITION A.4. Let Qy), q = 1, 2, 0 < t d 1 be as above, and suppose 
that, in addition, 

c (If’)+ l))‘+O, N-+cC 
i>N 

uniformly in 0 d t 6 1. Then 

II( l))‘- (if!?+ 1)-‘/I -+o, w + 0, 

II(fp+ l)-2-(R$‘+ 1))21),, -to, w + 0, 

uniformly in 0 < t < 1. 

Proof There are only some obvious changes in the proof of Proposi- 
tion 1.5. Q.E.D. 

We finally have to change Neumann boundary conditions on the line 
segment (0) x [ - w, w] into a Dirichlet boundary condition. 

PROPOSITION A.5. Let Q(l) be as in Lemma A.2, and let - A$$ obey 
Dirichlet boundary conditions on (0) x C-w, w], and Neumann boundary 
conditions on the remaining portions of a@‘). Also assume that 

A(I) -+ 03, i-co, 

untformly in 0 6 t d 1, where the Ai (I) denote the (repeated) eigenvalues of 
- A$‘). Then 

ll(-A$“‘+ l))-(-d;yk+ 1)-111 +O, w + 0, 

uniformly in 0 < t < 1. 

Proof: The proof is similar to the proof of Proposition 1.6 but it 
requires a t-independent version of Lemma 1.7 for eigenfunctions; see 
Lemma A.6 below. Q.E.D. 

LEMMA A.6. Let Q (I’ be as above, and let A > 0. Then there exists a 
sequence of cut-off functions bk E C*(R2) with the following properties: 

(a) Odbk< 1, 
(b) dk vanishes in a neighborhood of the origin, 

(c) for any E > 0, there exists k, E N such that for k > k,, 

IIu-dkUlI J@(~Vl) < E 

for all normalized eigenfunctions u of - A$“, associated with eigenvalues 
smaller than A, for 0 < t < 1. 
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Prooj Applying the Banach-Saks theorem to the sequence of cut-offs 
(Pi used in Lemma 1.7, we see that, for a suitable sequence {k, > c N 

We then may define d,,, = l/NC,“= 1 (P+ for NE N. As the eigenfunctions u 
(together with their gradients) obey a uniform bound on the ball Bs0,2, by 
Lemma A.2, the result follows by straightforward estimates. Q.E.D. 

Proof of Theorem A.l. The proof now follows closely the lines of proof 
of Theorem 2.1, using Propositions A.4 and A.5 in place of Propositions 1.5 
and 1.6, respectively. Q.E.D. 
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