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1. INTRODUCTION 

In this paper we study the Kadomtsev-Petviashvili-II (from 
simply abbreviated by KP) equation 

now on 

KP( V) := l’v, - 6VV, + l’,,X, + 3 sX dx’ Vvv = 0 
* 

and its modified versions, the mKP,-equations as introduced, 
[20,22,24,25] 

(1.1) 

e.g., in 

mKPJ4) :=d,-6~29.r+~x.~.x+ 3 Jx dx’d, 

+h~$,(j-~ dr.m)-0 &= +1. 
co 

(1.2) 

The following generalization of Miura’s transformation and his identity 
[30] for the (m)KdV-case to the present (m)KP one (due to [24]) 

J’e(c x> Y) = 44 x, yJ2 + 4x(4 x, JJ) - 8 j-* dx’ d,(t> x’, Y), &= *1, 
cc 

(1.3) 

KP(V,)=[8.Y+2d-~J.X a,]mKP,(+), E= +l (1.4) 
CL 

shows that given a solution 4 of mKP,(b) = 0, the transformation (1.3) 
yields a solution V, of KP( V,) = 0. Our main objective in this paper is to 
reverse this process, i.e., given a solution V of KP( V) = 0 we shall develop 
a method to construct solutions tiI: of mKP,(d,) = 0, E = + 1, such that (1.3) 
(with 4 =4,) holds. Our methods generalize a previous treatment of the 
analogous problem in the (modified) Kortewegde Vries context [lS] (see 
also [ 13, 141) in the sense that in contrast to [ 151 we now consider 
general, complex-valued, and singular solutions of ( 1.1) and (1.2). 

In Section 2 we recall basic facts in connection with the KP-equation; in 
particular, we briefly sketch the dressing method of Zakharov and 
Shabat [45] to construct special solutions of (1.1). In Section 3 we rederive 
the soliton solutions of the KP-equation (1.1) with the help of the dressing 
method. In Section 4 we accomplish our main goal and construct solutions 
of the MKP,-equations (1.2) in Theorem 4.5. In Lemma 4.3 we also derive 
a factorization of the linear operator L, := -82 +&a,, + V, E = fl, in the 
Lax pair for (1.1) that resembles the special (supersymmetric) factorization 
used in [ 151 in the corresponding KdV-case. Finally, in Section 5 we apply 
this method to derive the soliton solutions of the mKP,-equations (1.2). 
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Without going into details we also remark that all our results extend to 
the KP-I-equation (replace + 3 j-;C dx’ V,, by - 3 jz dx’ I’,, in ( 1.1)) and 
its modified versions. 

2. PRELIMINARIES ON THE KP-EQUATION 

In this section we briefly introduce the Kadomtsev-Petviashvili (KP) 
equation and some basic material such as its Lax pair and the dressing 
method to construct special solutions of it. 

Throughout this paper we shall assume hypothesis 
(H.2.1). Suppose I/: R3 + C is of the type 

V(t,X, Y)’ fiJ or,Cx-xj(t, Y)l~-2+u(z~X~ Y), 
i= 1 

where cxj E { 0,2}, xj~Cm(R2), 1 <j<M, MEN, xj#xj., for j#j’, and 
UE Coo(R3). Moreover, we assume that 

lim 
s r dx’a;, v(t, x’, y) E C”(R3), l=l,2 

‘0 - 30 q 

(the integral taken in the Riemann sense). 
The KP-equation (for solutions satisfying (H.2.1)) is then defined as 

WI 

KP(V):= I’,-61VY+ V,,,+3(~;‘V,,)=O, 

where we abbreviate 

(2.1) 

(K’f)(t, x, Y) := j-x dx’ f(t, x’, Y) 30 (2.2) 

for appropriatef’s. Clearly (H.21) with aj= 0, j= 1, . . . . M, is designated for 
smooth solutions V, whereas (H.2.1) with cli = 2, j= 1, . . . . M, is chosen to 
accomodate singular solutions, the simplest of which is of the type [S] 

V(t, x, y)=2(x+uy- 3a’t+b)-2, (a, b) E c2. (2.3) 

Equation (2.1) admits the following Lax representation. 

LEMMA 2.1 [lo] (see also [25, 453). Assume (H.2.1). Then 

L,, - CBJ,E> L,]=KP(I’+A), AER,E= fl (2.4) 



214 GESZTESY ET AL. 

on C”(R2\X(t)), where 

L,(t) := -a; + Ed, + V(r), E= +l, PER, (2.5) 

B,,,(t) I= -4a3,+6[V(t)+;l] a,+3V,(t)+3~[a,~V,(t)], 

IER, E= +I, PER, (2.6) 

~(t):={(Xj(t,y),~)~R~Iy~R,~j=2,j~{l,...,M}}, PER. (2.7) 

For later purposes we isolate the case where VE 0, i.e., introduce on 
C”(R2) 

~(0) I= -a; + &a,, E &= +1, (2.8) 

B$” := -4a: + 6Aa,, A E R. (2.9) 

In order to construct special solutions (such as solitons) of the KP-equa- 
tion (2.1), we briefly review the dressing method due to Zakharov and 
Shabat [45]. In this approach one constructs an integral operator Fe(t, y) 

(&k Y)./-)(X) = JR dx’ FAt, x, x’, v) .0x’), &= fl (2.10) 

satisfying 

[FE,, L:O’] = 0 = [FE,, a, - By’]. 

In that case the integral kernel F,(t, x, x’, v) has to solve 

(2.11) 

F E, xx - FE, x(.x, - &FE. y = 0 = Fe,, - 6W,,.x + I;,,,,) + 4(F,,,,, + Fe,,w). 
(2.12) 

In addition one introduces Volterra operators 

&,ik~)f)(x)= ~~+CCdx’K~;L(t.x,~‘,~)f(x’), E= +l (2.13) 
x 

and assumes 

(l+~~,,+)(l+~J=(l+~~,~), &= *1. (2.14) 

In particular, 

Ke,+ (6 x, x’, Y) + Fe(t, x, x’, Y) 

+ 5 
O” dx” K,, + (t, x, x”, y) F,( t, x”, x’, y) = 0, 
x 

&-(A x, x’, v) 

x’ > x, 

=F,(t,x,x’,~.)+~~dx”K,,+(t,x,x”,~)F,(t,x”,x’,~), XI <x. 
I_ 

(2.15) 
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For the purpose we have in mind (viz., the construction of soliton solutions 
of (2.1)) it suffices to define PC=,, kE, k , (1 +$,+))‘, etc. on Cp(R\X(t, y)) 
where 

X(t,y):={x,(t,y)~Rl~~=22,j~{l,..., M}}, (4 Y) E R*. 

(For more general situations see, e.g., the treatment in [29, 351.) It then 
follows that 

(1 +R,*)L?‘(l $&J1=L,, &= +1, 

(1 +&.N+B~“‘N1 +&,J1=~,-44 E,ER, E= fl, 
(2.16) 

where L,, B,,, are given by (2.5) and (2.6), respectively, with V given by 

v,ct, x, Y) = -2a,K,,+(t, x, x, Y), &= *1. (2.17) 

(Observe that the right-hand side of (2.16) is independent of whether one 
uses the upper or lower Volterra operator $,,.) 

Moreover, (2.10)-(2.15) imply 

L,t- CB~,c~ Lcl ~0, &= +1 - (2.18) 

and hence 

KP(I/,+i)=O, &= +1 (2.19) 

by (2.4) with V, given by (2.17). Finally, let tjk”(t, x, y) satisfy 

Lk"'t+b;"'= --Ic~$;~), (+B$,"')$~o'=O, ic>o,L~R,s= +l (2.20) 

in the sense of distributions, i.e., in C,“(R*)’ and CF(R3)‘, respectively. 
Then 

4k:=U+&.+)$k”‘, &= +1 (2.21) 

satisfies 

&ICI, = -K2*e, (at-B,,.s) II/e=02 rc>O,1~R, E= fl (2.22) 

in the sense of distributions, i.,e., in C,“(R’\X(t))’ and CF(R3\X)‘, respec- 
tively. Here 

X:= {(t,x,(t, y), y)oR31(t, y)~R*,a~=2,j~ (1, . . . . M}}. 

A solution of (2.20) to be used in Section 3 is e.g., given by 

$‘(t,x, y)=exp[-rcx+4(~~-6k)t], K>O, iloR. (2.23) 

580/98/l-15 
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Using this method we shall sketch a derivation of the soliton solutions 
of (2.1) originally obtained in [45] in the next section. Further applica- 
tions of the dressing method (also to the KP-I-equation) can, e.g., be found 
in [27, 31, 35, 453. 

Apart from the dressing method, other techniques have successfully been 
applied to (2.1). We mention e.g., the &approach to multidimensional 
inverse scattering [ 1, 3, 4, 42,441 and Hirota’s z-function approach [2, 17, 
18, 381 and its link with infinite dimensional Lie algebras [9, 16, 20, 22, 
36, 39, 403 and Fredholm determinants [34, 351. The problem of complete 
integrability and Hamiltonian structures for (2.1) was addressed, e.g., in [6, 
19, 26, 431. Blcklund transformations for (2.1) were studied in [7, 41, 461; 
also other particular solutions of (2.1) such as meromorphic ones [2, 8, 34, 
35, 381 and periodic multiphase solutions [S] appeared in the literature. 
(This list is by no means complete; we only give some of the more recent 
accounts and encourage the reader to study the references cited therein.) 

3. SOLITON SOLUTIONS FOR THE KP-EQUATION 

We briefly sketch a derivation of the N-soliton solution of the KP-equa- 
tion (2.1) with the help of the dressing method. Originally these solutions 
were derived in [45] (see also [ll, 28, 31, 32, 35, 371). We define 

F,(l, x, x’, y) := ; c”,,,,(t, y) e (pnx+ ynx’), 
iI=1 

E-CR, F,ER\{O}, p,>O, q,>O, l<n$N, E= +l. 

Then F, satisfies (2.11). Next assume 

k”&, 4 Y) = (k,l(h 4 Y), ..., ~,Jv(~, x, Y)), 

&(f,x, y)=(-c”,,(t, y)e rnr ,..., -F,Jf, j~)e-~“~), 

JN,Af, 4 .v) = [~,,A& y)(p, + 4X’ e ~pn+q~)~xl~m=l 
to satisfy 

(1 +&,)k=&, &= *1. 

Then 

K,,+(G x, x’, Y) := : k”,,,k x, y) e ~ @+‘, x’>x, &= +1 
n = 1 

satisfies (2.15). By Cramer’s rule 

it,, = det(;i N,E,J/Wl + AN,,), 1 $n<N,&= fl, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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where ;iNE,, is the matrix 1 + 2, c with the nth column replaced by &. 
(The positikty of det(1 + AN,) w’ill be discussed in Proposition 3.3.) By 
(2.17) and (2.19) this yields the N-soliton KP-solutions. 

THEOREM 3.1 [ll, 28, 31, 32, 35, 37, 4.51. Dejne 

VN,a(f, 4 Y) := -2~,~,,+(L x, 4 Y), NEN,E= +l 

with KEx, defined by (3.4). Then 

VN,At, x, Y) = -3: ln(detCl + INAt, x, ~11) 
and 

KP(f’,,,:+A)=O, AER, E= _+l. 

Moreover (following [12, 23]), we have 

c i;,,(t, x, y) cYn~‘= ~,ln{detCl + J,,(t, x, YII), 
n=l 

where 

Jk* N,E = --Ic2*N,E? (‘, - Bi.,,) $N,E = O> 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

tiN.c(h x~ Y) = c1 + &,,+k y)] $‘(t, x, y) 

= 1 + 5 (qn+ ~)-~l%~~,~(t, x, y) epYni eph.‘+(4KJ-6’K)‘, (3.12) 
1 n=l I 

~20, IER, NEN, E= fl 

and II/” is given by (2.23). 

We also note that ;i may be put in a more symmetrical form by 
introducing 

C,,,(h Y) := Cc”,,,(h Y)l 1’2, 

Lit> x> Y) := Cc”,,,(t, Y)I -“2 k,,(t, x, ~1, l<n<N,s= fl, 

kAt> x, Y) := (k,,,(t, x, Y), . . . . ke,N(f, x, Y)), (3.13) 

d,(t,x, y):=(-cc,,(t, y)epp’” ,..., -c,,N(t, y)eePNx), 

jiNdf? x2 y) := [C~,n(t? Y) CE,m(6 y)(Pn+qm)-’ ~~(Pn+ym)xl~m=l~ 

Then 

(l+~,v,,)k,=d,, &= fl (3.14) 
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and hence 

detC1 + A,,(& x, v)l = detCl + JIN,E(f, x, Y)I, &= +_I (3.15) 

by the similarity of J,,, and A,,,. 
Since (3.7) (in contrast to the KdV-solitons) for N> 2 also contains 

singular solutions for certain values of p,-, qj (see below) it is worthwhile to 
specify conditions under which (3.7) describes regular (i.e., P(R3)) 
solutions of (2.1). For that purpose we need some definitions. Let M be any 
N x N matrix. We then define Mj to be M with the jth line and row 
removed, and in general, A4j1,...ljm to be the (N-m)x(N-m) matrix 
obtained from A4 by removing the jr, . . . . j,th lines and rows. 

The characteristic polynomial of A4 can then be expressed as 

det(z + M) = det(M) + z 2 det(Mj) + z2 f det(Mj1,j2) 
j= 1 jl,j2= 1 

,I < i2 
N 

+ . . . +zN-1 c det(M”,...,,N-,)+ZN, z E c, 
jl,...,j,-I=1 

il < ... < Ix- I (3.16) 

where 

5 det(Mj13..-.jN-l) = Tr(M), (3.17) 
jl,..., jN-1 = 1 

il c ... <.f.v-l 

etc. are the principal minors of M. Moreover, using [33, p. 921 we get 

det[Afi;;.,jm(t, x, y)] 

= ,nl cjf(t3 Y)’ e -‘P”fqi”“det[(pj,+qj~)-l]~~,=, 

= ,nl Cj,(f, y)’ e-(p/f+‘II+ ,E, (P~~-PjkN~j~~4r*)/ fi (Pj,+C?jk)~ 

.h < ik 
I,k= I 

l<m<N-1. (3.18) 

Using (3.16) we obtain (cf. [32]) 

PROPOSITION 3.2. Let N > 1. Then det[ 1 + AN,Jt, x, y)] > 0 (and hence 
V,,e~ P(R3) by (3.7) and (3.15)) if 

(PI - Pk)(qj- qk) 2 0 forall j,k=l,..., N, j<k. (3.19) 

Condition (3.19) is also necessary in the sense that if ( pi0 - pk,)(q,jO - qko) < 0 
for some j,, k, E { 1, . . . . N}, j, < k,, then one can choose c, (t, y)*, 
jE { 1, . . . . N}\{ j,,, k,}, in such a way that det[l + AN,E(t, x, y)] changes sign 
at least once as x runs from -co to + 00. 
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ProoJ: Sufficiency of (3.19) is clear from (3.16) and (3.18) since every 
term in (3.16) (for z = 1) will be nonnegative and at least N+ 1 of them will 
be strictly positive. To prove the necessity statement assume that 

(Pjo - Pko)(4jo - qko) < O for some j,,, k, E { 1, . . . . N}, j, < k,. (3.20) 

Then (suppressing the t, y variables) choose x0 < 0 sufficiently negative 
such that 

c’ c2 e~(P,,+4,0+Pkg+Ykg)“0 (Pj~-Pko)(qjo-4kij) 

JO ka 
(Pjo + qjo)(P,o + qko)( Pko + qjo)(Pko + qko) 

2 

Next choose cJ’, Jo { 1, . . . . N}\{j,, k,}, small enough such that 

det[l + A,,,(,+,)] - cfoc& e~-‘p~~+q~ufPk~+YkO)Xo 

(Pjo - PkO)(q,O- qko) 

Go 2 

_ ~ e-(%+4,o)~o ‘ko e - ( Pk,, + 4k&O 

Pjo + q/o Pko + q&o 

- 1 Q l/2. (3.22) 

Then 

On the other hand, 

det[l +A,,,(x,)] < -l/2. 
(3.23) 

deW +4,&d ~--r+m. 1. (3.24) 

By continuity of det[l + A,,,(x)] w.r.t. XE R we conclude that 
det[l + LI~,~(x)] cannot be of definite sign for all XE R. 

The first part of Proposition 3.2 is due to [32] for N= 2, 3. We conclude 
Section 3 with the 

EXAMPLE 3.3. N= 1. 

Vl,c(t, 4 Y) = - 
(PI + 9112 coshp2 1 

2 zj (PI +d”-; (Pf-db 

+ 13i.(p,+q,)--2(p:+q:)ll-~ln[~l}, (3.25) 

KP( V,,, + A) = 0, AER, E= fl. (3.26) 
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4. THE r&P-EQUATION 

In this section we study the modified Kadomtsev-Petviashvili (mKP) 
equation as discussed, e.g., in [20, 22, 24, 251. In particular, given a solu- 
tion V of the KP-equation (2.1) we explicitly construct a corresponding 
solution 4, of the mKP,-equation (4.1) that are linked to each other by the 
generalized Miura transformation (4.5). 

We introduce hypothesis 
(H.4.1). Suppose d: R3 + C is of the type 

d(ffx,Y)= g ~j[x~a~(~~~)l~l+~~t~x~~~l~ 
i= 1 

where P,E (0, 1, -l}, -Fj~C”(R2), 1 <j<A, DEN, Zj#.?,,, for j#j’, 
and cp E Cm(R3). Moreover, we assume that 

lim s .’ dx’ +p(t, x’, y) E Cm(R3), l=l,2 
x0 - ‘x x0 

(the integral taken in the Riemann sense). 
The mKP,-equations (for solutions 4 satisfying (H.4.1)) following [20, 

22, 24, 251, are then defined by 

mKPM := 4, - 6d29, + Lx + 3(K ‘d,,) + 6M~;1c7y)y &= +I. 

(4.1) 

A (scalar) Lax pair for the mKP,-equations is provided by 

PROPOSITION 4.1 [24, 251. Assume (H.4.1). Then 

L,,,* - a,., L.,l = -2EcrmKP,(d) 8x5 &,cI= fl (4.2) 

on Cm(R2\f((t)), where 

L&J t) := -a; - 2&a&t) a, + cdl., PER, E, r~= ?l, (4.3) 

B,,(t) := -4d; - 12~qh(t) a; - 6cqbJt) 8, 

- W(tJ2 ax- W;‘4y(d) 8x3 t~R,e,o= il (4.4) 

T(t) :={(Zj(t, Y), ~)ER’ 1 ,~~R,flj= II,~E {l~...>~}}~ t E R. 

(4.5) 

Next we recall the following generalized Miura transformation. 
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PROPOSITION 4.2 [24]. Suppose 4 satisfies (H.4.1) and that for (k = 2, 
I= l), (k=O, I= l), (k=O, 1=2) 

lim ak, at,d(t, x, y) = 0 forall (t, y)cR2. 
x - ic 

Define 

vet4 4 VI := 4(t, x, Y)’ + 9,(t, 4 Y) - &@,‘d,.N, x, Y), E= kl. (4.6) 

Then 

KP(VJ= Cd.,+ 24 -EC?;' d,] mKP,:(4), &= *1. (4.7) 

In particular, whenever C$ satisfies mKP,(#) = 0, I’, defined in (4.6) 
satisfies KP( I’,) = 0. In the rest of this section we shall develop a device to 
reverse this process; i.e., given a solution V of the KP-equation (2.1), we 
shall construct solutions 4, of the mKP,-equation (4.1) that are linked to 
each other by the generalized Miura transformation (4.6) (with 4 = 4,). 

Before that we mention a slight generalization of Proposition 4.2. 

Define 

f’,(t> x, Y) := d(t, x, Y)’ + d,(t> x, Y) - 4~,‘4J(t, x, Y) + FL, P E R, E = k1. 
(4.8) 

Then 

W VA = II& + 7-d - E a,- ’ a,,1 Cd, - 6(d2 + PL) 9.x + 4,.x, 

+ 3(%‘&,) + W~K’4Jl~ PEER, E= +l. (4.9) 

Moreover, let 

4=x+6@, PER 

R4 t, Y) := vt, x, Y) -/A &4 5, v) := d(t, x, Y). (4.10) 

Then 

We also add the trivial observation that if V(t, x, y) satisfies the 
KP-equation (2.1) then so does V(t, x, -y). Similarly, if d( t, x, y) satisfies 
the mKP,-equation then &t, x, -y) and -q&t, x, y) satisfy the 
mKP pE- equation. 
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As a warm up for our final goal in this section we shall now present a 
factorization of the operator L, defined in (2.5). To avoid technicalities we 
restrict ourselves to smooth functions 0 E Cm(R3): 

For all t E R we define the set of operators 

A(t) :=a,+qqt) on P(R*\F(t)), 
(4.13) 

A(t)+ := 4,+lj(t) on P(R*\&t)), 

(G(t) f)k y) = exp 
[ 
Jf dx’b(t, XI, Y) AX, I.)], f E C”(R’\p(t)), (4.14) 

(D(t) ./xx, Y) = JX ~X’C.fJX’~ Y) - @,(t, Y) f(x’, Y)l> 02 
f~ C,“(R*\g(t)), (4.15) 

Then 

where 

@.“(A Y) := j” dx d,(t, x, Y). 
m 

A(t)+ = -G(t) d,G(t)p’, tER, 

D(t) a, = ay - c&(t) on C,“(R*\y(t)), t E R. 

Combining (4.13t(4.18) one obtains 

PROPOSITION 4.3. Define 

C(t) := -G(t) D(t) G(t)-‘, tER 

on Cr(R2\&t)). Then 

L(t) = CA(t) + EC(t)1 A(t)+, teR 

on CF(R*\z(t)), where P’ in (2.5) is given by V, in (4.6). 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

Remark 4.4. Equation (4.19) resembles the well-known (m)KdV case 
studied in [ 13-151. In fact, if ay 4 = 0 and 4 is real-valued then 

L(t) := -a; + qqt, ‘)’ + #,(t, .) = A(t) A(t)*, (4.21) 

where 

A(t) := a, + qqt, .) (4.22) 
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and 
V=4’+h (4.23) 

is Miura’s original transformation [ 301. 

This similarity to the (m)KdV-case motivated our main result. 

THEOREM 4.5. Let E = k 1 and assume that V satisfies (H.2.1) and 
KP( V) = 0. In addition suppose that $, E Cm(R3\X) satisfies for some t E R 
(independent of t and y) 

L,(t) $,(t) = r$At)t (4.24) 

(a, - Be(t)) Ii/e(t) = 09 (4.25) 

lim 8: ln[$&t, x, y)] = z&i,, , l=l,2, yeR (4.26) 
x+m 

for all t E R, where B,(t) := B,,,(t) (i.e., we choose I = 0 in (2.6)), 

X:={(t,x,(t,y),y)~R~I(t,y)~R’,aj=2,j~{l,...,M}}, (4.27) 

and (4.24) and (4.25) hold in the sense of distributions, i.e., in F’(R\X(t)) 
and C,“(R3 \X)‘, respectively. Assume that II/ has only poles resp. zeros of 
finite order at x,(t, y), j = 1, . . . . M. Define 

d,(t, x9 Y) = ~,lnC$,(t, 4 v)l. (4.28) 

Then 4, satisfies (H.4.1). Moreover, 

v(t, x, y) = $,(t, x, y)’ + d&t, x, y) - 44%.,)(t~ x, Y) (4.29) 

and 

mKP,(4,) = 0, &= fl. (4.30) 

Proof: Equation (4.29) simply follows from (4.24), (4.26), and 

d,,, = 8: lnClCl,l = 11/F72C$,$,,.rx- bC,l 
= V-z-4,2+& a,ln[$,] = V-c$,‘+E(c?;‘~~,,,). (4.31) 

In order to prove (4.30), we may assume r =0 (otherwise replace rj, by 
e-“‘Y$E). Then one computes 

d,,, - 6&A,, + 4e,x,x 
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= (IcIE’cwe.x.Y- $:,,I $,)(x). (4.34) 

Thus we have expressed every term in mKP,(d,) in terms of tj, and 
its partial derivatives. In the final step one adds up (4.32)(4.34) and 
invokes (4.24), (4.25), and KP( V) =0 in order to arrive at (4.30) after 
straightforward though lengthy computations. 

Clearly tiEc C”(R3) if 0 <II/, E Cou(R3). If tii: has zeros or poles at Z,, 
jE { 1, . ..) fi}, for some &EN then d,, solving (4.30), can only have first 
order poles at Zj with residue + 1 in agreement with (4.29) and the fact that 
I’, solving KP( I’) = 0, can only have second order poles with coefficient 2 
at x~=Z,~~,,~E (1, . . . . M}, for some A4 < AZ 

We shall use Theorem 4.5 to compute the N-soliton of the mKP,-equa- 
tions in the next section. 

Remark 4.6. One can interchange j: . . . . by l-Tou . . . . in (l.l)-( 1.4) by 
simply replacing cc by - cc in (H.2.1), (2.2), (H.4.1), Proposition 4.2, 
(4.15), (4.16), (4.26), and (4.33), (4.34). 

5. SOLITON SOLUTIONS FOR THE MKP,-EQUATIONS 

In this section we derive the soliton solutions for the mKP,-equations 
[20] (see also [18]) using Theorems 3.1 and 4.5. 

LEMMA 5.1. Define (cf. (3.12)) 

4N,E(4 x, Y) := 8, lnCtiN,,(t, 4 Y)I, NEN, E= +l. (5.1) 

Then (cf. (3.3) and (4.13)) 

~N.E(f,x,Y)= -K- f C(IC+q,).‘(A+(t)i;,,,)(t,x,y) 
?l=l 

+ K,,,(f, x, y)l e--Yn-y, K 2 0. (5.2) 
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LEMMA 5.2. Define 

E&, x3 Y) := -(K + q,J’A ‘(?I Uf, x, Y), l<n<N, 

6(4 x3 Y) := &At, x, y), . . . . E,,ct, x, Y)), 

$,(t, x, y) := 
K--PI - ~ F,;,I(l, y) e-p’“, . ..) K-P, m 

(5.3) 
- - CE,N(t, y) e --PNX ) 

K+41 K+qN > 

4,,(t,x, y):= zi,,,(t, Y)(pn+qm)~'e~'Pn+ym'r 
[ 

N 

. 
" 1 n,m=l 

Then 

(1 +4,,,f,=Zz. 

This finally yields the soliton solutions for the mKP,-equations 

(5.q 

THEOREM 5.3. We haoe 

dN,c(t, x2 y) = -K + 8, In 
detC1 + 2,,(~ x, ~11 
Wl + iiN,,(t, X, Y)] ’ 

K>o. (5.5) 

Moreover 

mKP,(4,,) = 0, &= *1 (5.6) 

ljjf ;i = K2. 

Proof: Insertion of (3.9) and its analogue for z,,,, 2N,, into (5.2) yields 
(5.5). Comparison with (4.25) in Theorem 4.5 no shows that we still have 
to fix % in (3.1) appropriately in order to conclude (5.6). By (3.11) 3. = K’ 
turns out to the right choice. 

In contrast to the original derivation of (5.5), (5.6) in [20] which uses 
the machinery of r-functions and vertex operators, our approach is close in 
spirit to the KdV-soliton derivations in [ 12, 231. 

EXAMPLE 5.4. N= 1. 

dl.,(k X, J’) = --Ic + ‘q {tan[cc(t, x, y)] - tanh[P(t, x, y)]} (5.7) 

with 

Cl 
+ [2(pf+q:)-3K2(pr+q,)]f+$n - L- 1 p1+41 ’ 

(5.8) 
1 

B(t,x, y)=df,x, y)+Tln K > 0. 
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If IC # p1 then 
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whereas if K = p, we get p(t, x, y) = --n3 and hence 

lim h,,(f, 4 Y) = -pl, lim il.,(t, x, Y) = ql, (4 Y)ER’. J + 00 x-4 -rx 
(5.10) 

Remark 5.5. We note that the sufficient condition (3.19) for regularity 
of the KP-solitons also represents a sufficient condition for the regularity 
of the mKP,-solitons as is evident by combining (3.19) with (5.4) and (5.5). 

Remark 5.6. If one wishes to use JYm . . . instead of Jz . . . in (1.1 t( 1.4) 
(see Remark 4.6), one needs to replace K,, + (t, x, x’, y) by K,,- (t, x, x’, y) 
in Sections 3 and 5. 
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