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Let us denote by N, the number of bound states of the Schrodinger operator H = 
-A -c/( 1 + Ixlz) + V, below -E. V. is a potential decaying at infinity sufficiently fast. We 
prove that, for dimension d= 1, 

and for d = 3, 

NE [J- 1121 
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c (21+1) 
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c- I+; 2. 
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1. INTRODUCTION 

Suppose V is a potential decaying near infinity. Let us denote by NJ V) the num- 
ber of eigenvalues of H = -A + V below -E. The finiteness (resp. infiniteness) of 
N,,(V) is determined by the rate of decay of V at infinity (see Reed-Simon 
[4, X111.31) In fact, N,(V) < co if V(x) B -c/~xI*+~, while N,(V) = cc for 
V(x) < -c/\x~*~‘. For the borderline case V(x)- c/lx12 one even has that 
N,,(V) < CO (resp. =co) if CC $(d- 2)2 (resp. >$(d--2)‘) where d is the spatial 
dimension. 

For potentials V behaving like -c 1x1 PB near infinity with p < 2, the behavior of 
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NJ V) as EL0 is exactly known (see Reed-Simon [4, Theorem X111.823). If we 
define 

R(E)=q 
(2x) 

( - V(X) - E)d’2 dx, 
(IC’(s)< --El 

which is the classical phase space volume associated with V, then 

. NE(V) 1 
gig(E)= 

(V-c I4 -/r near infinity, p < 2). 

In this paper, we are concerned with the behavior of NE(V) in the borderline case 
V(x) - c )x\-~ near infinity. In this case, the phase space volume g(E) diverges 
logarithmically as E goes to zero. While one might expect a logarithmic divergence 
of NE(V) for c > + (for d = 1 or 3), this is certainly not correct for c < $, in which 
case NJ V) is bounded as E JO. To state our result, let us define cd = $d - 2)2. We 
will prove below: 

THEOREM 1. Suppose V0 is a potential such that C,“(Rd) is a form core for the 
operators H, = -A + AV, for all J. E R, and such that H, has finitely many bound 
states below 0 for all L E R. Then 

lim NA-C/(1 + Ix12)+ vo)=fd(c)< co 
El0 b El 

fd(c) is zero iff c <cd. Moreover, we have 

1 
for c>- 

4 

c > 0, 

where [x] denotes the integer part of x, 

1 cJ;- l/21 
f&)=G c @[+I) ,=o p(q 0;. 

We note that similar formulae for &(c) (da 4) can be derived by the method 
employed below. 

There is a systematic philosophy for analyzing corrections to the quasiclassical 
limit associated with the work of Fefferman-Phong. This would suggest that, rather 
than look at the volume in phase space of S, = {(x, p) 1 p2 + V(x) < -E}, one 
looks at 

S, = ((x, p) 1 (x, p) is the center of box of volume 1 inside So). 
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This actually predicts that -d*/dx* - c( 1x1 + 1))* has infinitely many eigenstates 
only when c > a. We believe that it may correctly give f,(c), but doubt that it wiI1 
correctly give f,(c) for n 2 2. 

In a forthcoming paper [ 11, we will give criteria involving local LP-norms of V 
which imply that -A + 2 V has finitely many bound states. For example, in dimen- 
sion d = 3, we only require 

Throughout this paper, we will keep the following assumptions: Cr( R”) is a form 
core for -A+3LV+pV, for all 1,p~R and infa,,,(-A+dV+pLO)=O. This is 
satisfied, for example, if V and V, are relatively compact with respect to -A. 

The paper is organized as follows: In Section 2, we investigate a one-dimensional 
potential, r, which is derived from c/lxl’ by first scaling and then perturbing it in a 
suitable way. This procedure is done in such a way that the Schrodinger equation 
with P can be solved explicitly in a region of interest. We show, in Section 3, how 
to prove Theorem 1 from the results of Section 2. In Section 5, we prove Theorem 1 
for d> 1. 

2. A SCALED EIGENVALUE PROBLEM 

We consider the potential 

J/yx) = 
i 

-c~lx12 for /xl21 
0 l-4 < 1 

and the operator H = -d*/dx* + V”“(x) on L*([w). For any operator, A, we define 
N,(A) to be the number of eigenvalues of A (counting multiplicity) below -E. We 
are interested in the behavior of N,(H) as E JO. 

Define the scaling operator U,cp(x) =p + “*&x). UP is a unitary operator. 
Setting 

v (x)= V’)(x)= -c/l4’ I-4 >P 
P P 0 otherwise 

and 

we get 

U/,‘HU,=p*H,. 
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Consequently, 

N,(HI”‘) = N, -+( Hb”‘). 

Taking p = E+ “*, we finally obtain 

PROPOSITION 1. NJ H) = N, ( HE1;2). 

Instead of investigating the potential VE,,2 directly, we consider a perturbed ver- 
sion of V,92, namely 

-c/l-4* I-4 +h 
BE1,2(X) = 

1 

-c/\xl’- 1 E’126 1x1 <J;; 

-1 otherwise. 

rE1,2 is chosen in such a way that we find an explicit solution of &E~I~~ = -U (in 
(El’*, A)) very easily. We will eventually show that the perturbation does not 
change the behavior of N,( HE1:2) for E 10. 

Let us define ii,,,1 = - d2/dx2 + PE~,~, and let i?,~2 be the operator obtained from 
RE1,2 by imposing Dirichlet boundary conditions at the points Yc& and + fi. 
Since the resolvents of fi,,, and fi,,,, differ by a finite rank operator (in fact, an 
operator of rank 4), INI(fiEL12) - N,(A,1,2)( is bounded ( ~4) uniformly in E. fi,m is 
a direct sum of five pieces, namely 

Consequently (see, e.g., RS [4, X111.15]), 

N1(&2) = i: N,(&!/,2), 
,=I 

where fi($,2 denotes the jth term in the above direct sum. However, only the second 
and the fourth operators have eigenvalues below - 1; moreover, by symmetry, 
N,(fi$h) = Nr(fi$). Hence, it suffices to consider firz2. 

For c>b and O<E<l, 

PROPOSITION 2. 

for an E-independent constant B. 
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Proof: We seek a solution, u, of 

i.e., 

---2 

Trying the ansats U(X)=,? (CUE C), we obtain the solution u(x) =x”~.x’-; 
hence U,(X) =x ‘I2 sin(JZj 1 n x is a real valued solution. The number of zeros of ) 
u, between fi and j’ c equals the number of (positive or negative) integers n 
between (,/q/2n) In E and (da/27t) In c which roughly equals the 
distance between these numbers. More precisely, 

Furthermore, the number of zeros of any solution of I?$u = --u equals the 
number of eigenvalues of IV,(%$,) up to an E- (and c-) independent constant, by 
Sturm’s oscillation theorem. 1 

Summarizing, we get 

PROPOSITION 3. N,(AEu2)+ (Jc-1/11/x)ln E is bounded by an E-independent 
constant, M. 

Remark. The constant M can be chosen as M = (J-/X) In ICI + M’ where 
M’ is independent of c. So M can be chosen uniformly in c on bounded sets. 

Proposition 3 leads to the following corollary: 

COROLLARY 1. Let co > a. Then 

lim lim W422) 1 

c-co El0 N,(fi!$) = . 

3. PROOF OF THEOREM 1 

We prove in this section that the behavior of NI(fiE~,2 + VO) as E 10 for V, boun- 
ded, and of compact support, is the same as the behavior of N,(~E~,z). This gives us 
the behavior of N,(H,IQ) since A,,,, - HE,,2 is a bounded function of compact 
support. Hence, by scaling, we know the behavior NE( -d2/dx2 + V’“‘). Finally, we 



CORRECTIONS TO BEHAVIOR OF SCHRijDINGER OPERATORS 127 

show that perturbing V (C) by a function which decays fas enough at infinity does 
not change the behavior of N,(H). 

We need some preparation: 

PROPOSITION 4. Suppose that A and B are self-ajoint operators bounded below 
with info,,,(A) = info,,,(B) = 0, and assume that A, B and A + B have a common 
core, Do. Then, for any E>O and any O<E< 1, 

WA + 4 G N(, --E&4) + N,,(B). 

Proof By the min-max theorem [4, X111.1) 

P,(A)= sup inf (a&) 
ILl.....ti.-I “,;p~y=; 

is the nth eigenvalue of A, or is the bottom of the essential spectrum, in which case 
A has less than n eigenvalues below its essential spectrum. 

We conclude that 

Hence, if N,, _ EjE( A) = m and NJ B) = k, then 

PU,+~+I(A+B)~PL~+, (A)+~lk+,(B)>(l-E)E+EE=E 

so N,(A+B)<m+k. m 

PROPOSITION 5. Let V, W be potentials on Rd, s.t. the operators 
H,., = -A + ,IV + p W have a common form domain for all ,I, p and such that 
inf oess( H,+) = 0. Then, for any E > 0 and 0 < E < 1: 

(i) N,(-A+ V+ W)<N,(-A+(l/(l-E)) V)+N,(-A+(l/&) W) 

(ii) N,(-A+ I/+ W)>N,(-A+(l-E) V)-N,(-A-((l-&)/c) W). 

Proof (i) is an immediate consequence of Proposition 4, if we note that 
N,,(A) = N,(cr-‘A). (ii) follows from (i) by 

N,(-A+(l-E) V)=N,(-A+(l-E)(V+ W)-(1-E) W) 

dN&A+V+ W)+N, 
( 

-A-- (1-E) w  
E 

, 

595,‘183!1-9 



128 KIRSCH AND SIMON 

We no come back to the potentials we are concerned with here: 

PROPOSITION 6. If V, is a bounded function of compact support and then zf c > + 

lim Nl (q$ + Vo) 
El0 N,(jf$‘:,) = l. 

Proof Set 

and 

x,.(x) = X{.,Il,l qQ(x) 

Ws=(l -~hIl,(lLE))(.-XL. 
By Proposition 5(i), we know 

N, (R$ + V,) = N, 
( - -$+ v;;1*-c1 -Q(,,(,-,,),.+ vo+ we ) 

W,) 

Dividing by N,( -d2/dx2 + a’$,) and taking E JO and then E + 0, we get that the 
limit in question is B 1. 

The lower bound is similar and uses (ii) of Proposition 5 instead of (i). 1 

As an immediate consequence, we remark: 

COROLLARY 2. 

1 
if c>-; 

4 

in particular 

Corollary 2 and Proposition 5 allow us to prove Theorem 1 for the one-dimen- 
sional case: 

Proof (Theorem 1, d= 1). The proof is closely related to that of Proposition 6. 
We may write the potential 

-(l +:X,2)+ v” 
as V”‘+ P . 01 
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then 

The second term in the above sum is bounded as E J 0 for tixed E > 0. Thus, dividing 
by N ~ J - d2/dex2 + Y”‘) and taking the limit E JO, we get 

lim 
NJ -d2/d.r2 + Ycc) + v,J < lim NE(H(“(’ pE))“) 

ELO N,(-d’/d.u2+ Ycc)) ‘ELO N6( H”“) ’ 

This limit converges to one as E + 0 by Corollary 2. Again, the lower bound goes 
along the same lines. a 

4. THE HIGHER-DIMENSIONAL CASE 

Now, we consider a potential 

V(x) = 
i 

-C/1X1’ for 1x1> 1 
o 

1x1 d 1 

in arbitrary dimension x E IWd, d > 1. Since V is rotation invariant, we may separate 
the Schrodinger equation in spherical coordinates and obtain (see Reed-Simon 
[2, X.1 1) the radial equation 

H,:= --$+ (d- ‘W-3)+I(I+d-2) 
4 

l=O, 1, . . . . 

We will restrict ourselves to the cases d = 2, d = 3. For the higher-dimensional 
cases we refer to Reed-Simon [3, X.1 (Appendix)] and Miiller [2]. All the com- 
putations below are easily done for d > 3 as well, and nothing changes qualitatively 
in those dimensions. 

Define by N,(E) the number of eigenvalues below -E of the operator H, on 
L’(O, co ) with Dirichlet boundary condition at the origin. Then N( Ho + V, E) is 
given by 

No(E)+2 f N,(E) for d=2 

NE(Ho+ V)= 

1 

I= I 

,c, V+ 1) N,(E) for d=3. 

We may now employ the techniques and results of Section 3 to obtain the small E 
behavior of N,(E). 
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Suppose first that d = 2. In this case, we have that N,(E) = cc for arbitrary c > 0, 
because of the “angular momentum” term - l/4?. For 1= 0, the effective potential 
is given by -(c+$)/IxJ2; hence lim,,, (N,,(E)/lln El) = (1/2n) &. (The f-term 
appears since we consider an operator on the haZf line.) 

For O<c<l, N,(E)< cc for all I>O. If c> 1, then N,(E)= co; in fact, the effec- 

tive potential is -((c-i)/lx12; hence lim,i,(N,(E)/IlnEl)=(1/2n)~ and so 
on. By this procedure, we obtain the result of Theorem 1 for the potential I’= I”“’ 
in the case d = 2. The case d = 3 (as, in fact, d > 3) goes along the same line. 

We now use Proposition 5 and the fact that 

. . NE( -A + V”‘) 
if c > 0 for d= 2, 

1 
!z~ !$A NJ -A + PO)) = 1 

resp. c>- for d=3 
4 

to prove Theorem 1 in full strength. 
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