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Abstract. We provide an alternative proof of the main result of Deift and
Hempel [1] on the existence of eigenvalues of v-dimensional Schrόdinger
operators Hλ = H0 + λW in spectral gaps of Ho.

In a beautiful paper, Deift and Hempel [1] proved the existence of eigenvalues of
Schrόdinger operators Hλ = H0 + λW in spectral gaps of Ho. For the relevance of
this result to the theory of the color of crystals, see [1] and the references therein. In
this note, we present an alternative proof of their main Theorem 1. We present our
proof because of its striking simplicity.

Our hypotheses read:
(H.I) FeL°°(IRv) real-valued, v e N .
(H.2) WeL^iΈC) real-valued, supp(P^) compact, W_(x)^l for

xeBεo(xo):= {xeΊRv\\x — x0\<ε0} for some xoesupp(W_)

and some ε0 > 0 (here W±(x): = [|W(x)\ ± W{x]\β).
Given (H.I) and (H.2) we define in L2(RV) the Schrόdinger operators

(1)

with A the Laplacian defined on the standard Sobolev space if 2 ' 2 (R v ). Without
loss of generality, we next modify W± to W+ so that

(α) 0^^ ± 6L°°(R v ) , supp(W±) compact,
(β) W=W+-W_ = W+-W_,
(γ) s\λpp(W+) = {xe]Rv\ε^\x-x()\SR}-=Σ, where R is chosen so large that

supp(W)CBR(x0),

and where ε ^ ε 0 as well as R will be chosen later. Moreover W+}zί on Σ.
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Theorem. Suppose hypotheses (H.I) and (H.2). Let (α, b)Q ρ{H0) be a spectral gap of
Ho and assume Eo e (a, b). Then there exists a sequence of positive numbers λn j GO
such that Eoeσp(Hλn), n e N .

Proof, (i) In the first step we use the Birman-Schwinger principle (in the form of
[2]), i.e.,

Eo e σp(Hλo) o — e σ(Kλo(Eo)) (2)

with multiplicities preserved, where

Kλ(E): = Wll2{H0 + λW+ ~E)~ι Wl12. (3)

(ii) Secondly, we recall that

Kλ(E0)^Wl%JiH^D-EΌr1Wll\e: = KJE0)9 (4)

where Hξ*D= -A%(Xo)+V in L2(Be(x0);dvx). This follows e.g. from [3],

^ l Δ ^ Σ + V ) ( 5 )

and the support properties of W-. [Here A% denotes the Dirichlet-Laplacian in
L2(Ω; dvx\ ΏglRv open.] By choosing ε and R appropriately, we may assume that

(iii) For ε > 0 small enough, H^D^E0 + \. By commutation [4],

c ω = < w i : D -EOV1 /2 w- \Bε(HB

0:D - E0) - I / 2 ) . (6)

By (H.2),

and hence by the min-max theorem [5], K^EQ) ^ 0 has (countably) infinitely many
positive eigenvalues accumulating at zero.

(iv) Because of (ii), Kλ(E0) is analytic for λ^.Λ0 for some Λ 0 > 0 .
(v) ΛoKΛo(Eo) has only finitely many eigenvalues above 1 by compactness. By

(iii), as λ joo, λKλ(E0) has arbitrarily many eigenvalues above 1. It follows that
there are infinitely many λ>Λ0 to which 1 eσ(λKλ(E0)).

Remarks, (i) V, We L°°(IRV) are inessential assumptions. Local singularities can be
handled in a standard manner [5].

(ii) While our assumption s u p p ^ ) compact has not been used in [1], our
result is stronger than their Theorem 1 in the sense that we do not have to worry
about "exceptional levels." In the meantime, however, these exceptional levels
have also beem removed in [6]. Using involved arguments, entirely different from
ours, the author in [6] was also able to dispense with our condition supp(FK_)
compact. After completing this work, we were informed by P. Deift that prior to
our work he, S. Alama and R. Hempel [7], replaced the condition supp(W)
compact by an appropriate falloff of W at infinity. The methods in [7] are
generalizations of those in [1] and [6] and substantially different from ours.
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