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1. Introduction. The general theory of compactifications of a completely 
regular space, X, either from a classical Tychonoff cube or from the modern 
Gelfand point of view is well known (see, e.g., [I] pp. 223-227). I t  turns out 
that  in case the original space is not compact, there are many different compac- 
tifications; in fact, there is one for every algebra of bounded continuous real- 
valued functions on X which is closed in the uniform norm and which contains 
enough functions to separate points from closed sets. Even in the case where X 
is the real line, R, one rarely talks about anything but the one-point, the two- 
point and the Stone-tech compactifications. The  first two are quite tame while 
the last is impossible to picture. The  purpose of this paper is to present a certain 
class of compactifications of R which are quite easy to picture. 

2. The main result. First, we state the basic definition: 

If X i s  a topological space, a compactification of X i s  a compact Hausdorf 
space, Y ,  together with a map  f :  X - +Y such that: 

(i) f i s  a homeomorphism of X and im f (the image o f f )  where im f has the rela- 
tive topology which i t  inherits as a subset of Y. 

(ii) Im f i s  dense in Y. 
Two compacti$cations f :  X - +Y and g :X-+Z are said to be equivalent if there 

i s  a homeomorphism h :  Z-+ Y such that 

commutes, i.e., f =h o g. 

One normally associates X with its image in the compactification, in which 
case the commutative diagram is replaced with the statement that  h leaves X 
pointwise fixed. 

We will be concerned with compactifications of [0, w ). Iff: [0, w )+ Y is a 
compactification, we will say that  Y-im f has been added to make the compacti- 
fication. The  main result is the theorem: 

Let X be a compact Hausdorff space and let g: [0, w)+X be a continuous map 
with the property that for each a>O, g ( [ a ,  a ) )  i s  dense in X .  Then [0, co) has a 
compactification in which X has been added to make the compacti$cation. 

We note that  g was not required to be either injective, or if injective, a 
homeomorphism onto im g. We also emphasize that X is nat itself the compact 
extension. 
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Proof. Let I=[o, 11and define f:  [0, a ) + X X I  by f(a) =(g(a), h(a)) where 
h(a) =a/(l+a) is a homeomorphism of [0, a )  and [o, 1). For convenience set 
G=g 0 h-1. 

We first show that f is a homeomorphism of [o, 03) and im f. I t  is obvious 
that f is continuous since its coordinates are continuous and 1-1since h is 1-1. 
Moreover, f is open, for if A C  [0, a )  is open, h [ ~ ] c  [O, 1) is open and thus 
f [A] = (XXh[A])nim f is relatively open in im f. 

Next, we show that imf= (XX { 1] )Vim f. For let ( x ,  r) E X X  I with r Z 1 
and x#G(r). We show that (x, r) Gimf; for let B and C be disjoint open sets in 
X about x and G(r )  respectively. Then (BXG-I [c]) is a neighborhood of ( x ,  r) 
which does not intersect imf. On the other hand any (x, 1) ~imf;for let UX (b, 11 
be a rectangular neighborhood of (x, I ) ,  and let a =h-'(b). Then, by the density 
assumption, Ung((a,  a))f@; say g(c)E U.Then f (c)  = (g(c), h(c))€ U X  (b, I ] .  
Thus (x, 1) ~imf. -
-Thus our result is proven; for f: [o, co)-+im f is a cornpactification and 
imf-im f = X .  

3. Some examples. Since (0, a)is homeomorphic to the real iine, given g as 
in the main theorem (and given a speciJ;c homeomorphism of (- a ,  a )  and 
(0, a ) ) ,  we can regard f :  (0, a)-+imf as a compactification of R. We get this 
compactification "by putting a point a t  one end of R and X a t  the other end"; 
thus we will call i t  the point-X cornpactification (actually a point-X compacti- -
fication since the way R lies in im f depends not only on X but on the exact map 
g and on the homeomorphism of (- a,co) and (0, a ) ) .  Given two compactifi- 
cations of [0, a )  following the theorem, say by adding X and Y respectively, 
we can view one as a compactification of (- a,0) and join the two together a t  
0 and so get an X -  Y compactification or if X =  Y a two-X cornpactification. 
Finally given a map g satisfying the hypothesis of the theorem, one can consider 
the two-X compactification and "glue" the two copies of X together; a 
('one-X" compactification results. This terminology agrees with the usual one- 
point, two-point terminology in the case that X is a single point. 

The prime example of an X and a g obeying the conditions of the theorem, 
in fact, the example that motivated the theorem is the winding line on the torus 
SIXS1.If S1is represented by real coordinates mod 2n,and g: 10, co )-+S1 X S1 
is defined by g(a) = (a, ta) with t a fixed irrational number, then g meets the 
hypothesis of the theorem. In this way, one can construct one- and two-torus 
compactifications. 

To  obtain a geometric picture of a torus-point compactification, we imbed 
(SIXS1)XI in R3as a toroidal shell, In fact, without changing the construction 
of the main result, we can shrink (SIX S1)X f 0 ] into a circle and so view our 
compactification as being embedded in a solid torus. Then we take a copy of the 
real line, start it a t  the center of a cross-section and let it spiral out towards the 
surface, winding around longitudinally as we spiral outward; only the surface 
need be added to give us a compact set. 
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Of course, we need not stop with two dimensions or with the torus. We can 
get a winding line on an n-dimensional torus or we can go to a countable number 
of dimensions or even an uncountable number of dimensions since the reals have 
uncountable dimension over the rationals. Or one can wind about a two-
dimensional sphere as  if one were winding a ball of yarn and thereby find sphere- 
torus, point-sphere and assorted other compactifications. Again, one is not 
restricted to two-dimensional spheres. More exotic spaces (like SnXSmor a nest 
of circles tangent a t  one point) can be used. 
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LEFT ARTINIAN RINGS THAT ARE D M S I O N  RINGS 

ELIZABETHAPPELBAUM,University of Missouri, Kansas City 

Zariski and Samuel point out that if R is a commutative ring with identity 
and no proper divisors of 0, and R satisfies the descending chain condition, then 
i t  is a field [I, p. 2031. Surprisingly, we can omit the assumptions of commuta- 
tivity and an identity and prove the following theorem: 

IfR is a left Artinian ring with no proper divisors of 0, then R is a division ring. 

Proof. Recall that a left Artinian ring is one in which every properly descend- 
ing chain of left ideals is finite. A semisimple ring is a left Artinian ring with zero 
radical [2, Chapter 21. A semisimple ring has a multiplicative identity [2, p. 291. 
Now if R is left Artinian with no proper divisors of 0, then i t  is semisimple and 
hence has an identity 1. Consider R as a left R-module. All the submodules are 
left ideals, so R is an Artinian left R-module. Let bER,  b#O, and define a func- 
tion f on R: 

Then f is an endomorphism of R as a left R-module and f is one-to-one. Now a 
one-to-one endomorphism of an Artinian module is an  automorphism [3, p. 231. 
Hence for all b in R different from 0, there exists x in R such that xb = 1. Thus 
R is a division ring. 

The author is a National Science Foundation fellow. 




