SOME PICTORIAL COMPACTIFICATIONS OF THE REAL LINE

BARRY SIMON, Princeton University

1. Introduction. The general theory of compactifications of a completely regular space, X, either from a classical Tychonoff cube or from the modern Gelfand point of view is well known (see, e.g., [1] pp. 223-227). It turns out that in case the original space is not compact, there are many different compactifications; in fact, there is one for every algebra of bounded continuous real-valued functions on X which is closed in the uniform norm and which contains enough functions to separate points from closed sets. Even in the case where X is the real line, R, one rarely talks about anything but the one-point, the two-point and the Stone-Čech compactifications. The first two are quite tame while the last is impossible to picture. The purpose of this paper is to present a certain class of compactifications of R which are quite easy to picture.

2. The main result. First, we state the basic definition:

If X is a topological space, a compactification of X is a compact Hausdorff space, Y, together with a map $f: X \rightarrow Y$ such that:

(i) f is a homeomorphism of X and $\operatorname{im} f$ (the image of f) where $\operatorname{im} f$ has the relative topology which it inherits as a subset of Y.

(ii) Im f is dense in Y.

Two compactifications $f: X \rightarrow Y$ and $g: X \rightarrow Z$ are said to be equivalent if there is a homeomorphism $h: Z \rightarrow Y$ such that

commutes, i.e., $f = h \circ g$.

One normally associates X with its image in the compactification, in which case the commutative diagram is replaced with the statement that h leaves X pointwise fixed.

We will be concerned with compactifications of $[0, \infty)$. If $f: [0, \infty) \rightarrow Y$ is a compactification, we will say that Y-im f has been added to make the compactification. The main result is the theorem:

Let X be a compact Hausdorff space and let $g: [0, \infty) \rightarrow X$ be a continuous map with the property that for each a > 0, $g([a, \infty))$ is dense in X. Then $[0, \infty)$ has a compactification in which X has been added to make the compactification.

We note that g was not required to be either injective, or if injective, a homeomorphism onto im g. We also emphasize that X is not itself the compact extension.

Proof. Let I = [0, 1] and define $f: [0, \infty) \rightarrow X \times I$ by f(a) = (g(a), h(a)) where h(a) = a/(1+a) is a homeomorphism of $[0, \infty)$ and [0, 1). For convenience set $G = g \circ h^{-1}$.

We first show that f is a homeomorphism of $[0, \infty)$ and im f. It is obvious that f is continuous since its coordinates are continuous and 1-1 since h is 1-1. Moreover, f is open, for if $A \subset [0, \infty)$ is open, $h[A] \subset [0, 1)$ is open and thus $f[A] = (X \times h[A]) \cap \text{im } f$ is relatively open in im f.

Next, we show that $\overline{\operatorname{im} f} = (X \times \{1\}) \cup \operatorname{im} f$. For let $(x, r) \in X \times I$ with $r \neq 1$ and $x \neq G(r)$. We show that $(x, r) \notin \overline{\operatorname{im} f}$; for let B and C be disjoint open sets in X about x and G(r) respectively. Then $(B \times G^{-1}[C])$ is a neighborhood of (x, r)which does not intersect im f. On the other hand any $(x, 1) \in \overline{\operatorname{im} f}$; for let $U \times (b, 1]$ be a rectangular neighborhood of (x, 1), and let $a = h^{-1}(b)$. Then, by the density assumption, $U \cap g((a, \infty)) \neq \emptyset$; say $g(c) \in U$. Then $f(c) = (g(c), h(c)) \in U \times (b, 1]$. Thus $(x, 1) \in \overline{\operatorname{im} f}$.

Thus our result is proven; for $f: [0, \infty) \rightarrow \overline{\operatorname{im} f}$ is a compactification and $\overline{\operatorname{im} f} - \operatorname{im} f = X$.

3. Some examples. Since $(0, \infty)$ is homeomorphic to the real line, given g as in the main theorem (and given a *specific* homeomorphism of $(-\infty, \infty)$ and $(0, \infty)$), we can regard $f: (0, \infty) \rightarrow im f$ as a compactification of R. We get this compactification "by putting a point at one end of R and X at the other end"; thus we will call it the point-X compactification (actually a point-X compactification since the way R lies in im f depends not only on X but on the exact map g and on the homeomorphism of $(-\infty, \infty)$ and $(0, \infty)$). Given two compactifications of $[0, \infty)$ following the theorem, say by adding X and Y respectively, we can view one as a compactification of $(-\infty, 0)$ and join the two together at 0 and so get an X - Y compactification or if X = Y a two -X compactification. Finally given a map g satisfying the hypothesis of the theorem, one can consider the two -X compactification results. This terminology agrees with the usual onepoint, two-point terminology in the case that X is a single point.

The prime example of an X and a g obeying the conditions of the theorem, in fact, the example that motivated the theorem is the winding line on the torus $S^1 \times S^1$. If S^1 is represented by real coordinates mod 2π , and $g: [0, \infty) \rightarrow S^1 \times S^1$ is defined by g(a) = (a, ta) with t a fixed irrational number, then g meets the hypothesis of the theorem. In this way, one can construct one- and two-torus compactifications.

To obtain a geometric picture of a torus-point compactification, we imbed $(S^1 \times S^1) \times I$ in \mathbb{R}^3 as a toroidal shell. In fact, without changing the construction of the main result, we can shrink $(S^1 \times S^1) \times \{0\}$ into a circle and so view our compactification as being embedded in a solid torus. Then we take a copy of the real line, start it at the center of a cross-section and let it spiral out towards the surface, winding around longitudinally as we spiral outward; only the surface need be added to give us a compact set.

1969]

MATHEMATICAL NOTES

[May

Of course, we need not stop with two dimensions or with the torus. We can get a winding line on an *n*-dimensional torus or we can go to a countable number of dimensions or even an uncountable number of dimensions since the reals have uncountable dimension over the rationals. Or one can wind about a two-dimensional sphere as if one were winding a ball of yarn and thereby find sphere-torus, point-sphere and assorted other compactifications. Again, one is not restricted to two-dimensional spheres. More exotic spaces (like $S^n \times S^m$ or a nest of circles tangent at one point) can be used.

4. Acknowledgements. The torus compactifications which were the germinal idea for the main result were arrived at in a conversation between the author and Mr. Jerry McCullom, to whom the author is indebted.

The author was supported by an NSF predoctoral fellowship during the preparation of this paper.

Reference

1. I. Gelfand, D. Raikov, and G. Shilov, Commutative Normed Rings, Chelsea, New York, 1964.

LEFT ARTINIAN RINGS THAT ARE DIVISION RINGS

ELIZABETH APPELBAUM, University of Missouri, Kansas City

Zariski and Samuel point out that if R is a commutative ring with identity and no proper divisors of 0, and R satisfies the descending chain condition, then it is a field [1, p. 203]. Surprisingly, we can omit the assumptions of commutativity and an identity and prove the following theorem:

If R is a left Artinian ring with no proper divisors of 0, then R is a division ring.

Proof. Recall that a left Artinian ring is one in which every properly descending chain of left ideals is finite. A semisimple ring is a left Artinian ring with zero radical [2, Chapter 2]. A semisimple ring has a multiplicative identity [2, p. 29]. Now if R is left Artinian with no proper divisors of 0, then it is semisimple and hence has an identity 1. Consider R as a left R-module. All the submodules are left ideals, so R is an Artinian left R-module. Let $b \in R$, $b \neq 0$, and define a function f on R:

$$f(x) = xb.$$

Then f is an endomorphism of R as a left R-module and f is one-to-one. Now a one-to-one endomorphism of an Artinian module is an automorphism [3, p. 23]. Hence for all b in R different from 0, there exists x in R such that xb = 1. Thus R is a division ring.

The author is a National Science Foundation fellow.

538