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Abstract. We extend the proof of localization by Delyon, Levy, and Souillard to
accommodate the Anderson model with off-diagonal disorder and the
continuous Schrόdinger equation with a random potential.

1. Introduction

New proofs of localization were recently found by Delyon et al. [1-3], Simon et al.
[4], and Simon and Wolff [5]. These proofs arose in an effort to understand some
very interesting work of Kotani [6] on the sensitivity of the nature of the spectrum
with respect to boundary conditions for one-dimensional systems on a half-line, a
work itself connected with a work of Carmona [7]. These proofs work for the
Anderson model with diagonal disorder, which is the Hamiltonian H on l2(Zd)
given by

(Hu)(x)= Σ u(y) + bnu(x). (1)

The results hold for one-, quasi-one, and multi-dimensional systems in appropriate
domains of the parameters and for large classes of (possibly correlated) random
processes for the Vs.

In this note we will study the case of off-diagonal disorder for discrete
equations and also the case of the continuous Schrόdinger equation with a random
potential. It is already known in one dimension in some situations (for example
assuming independence of the random parameters and some regularity of the
distribution of the random variables) that a discrete Schrδdinger equation with
off-diagonal disorder has only pure point spectrum and exponentially decaying
eigenfunctions [8]. The same result is also known for the continuous Schrodinger
operator, under some conditions of independence of the potential and regularity of
its distributions [9-12]. For a large bibliography on the topic of random discrete
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and continuous Schrodinger equations, we refer to [13] and for a review of the
mathematical results in this field we refer to [14]. In the present paper, we give a
new proof of these results, based on the proof of [1-3] which is much simpler than
the previous ones and in addition applies to many new situations. The preprint
[15] presents a distinct but related proof of Theorem Γ below.

The approach of the present paper is basically the same as the one of [1-3] for
the Anderson model (1) and may be summarized as follows: we assume that the
realization of the random parameters is such that for one-dimensional systems the
Lyapunov exponent associated to the equation Hu = Eu is strictly positive for
almost every E (alternatively for higher dimensions, we assume that the realization
of the random parameters is such that for almost every E the Green's function
decays exponentially with the distance). These hypothesis imply that for a.e. E any
solution of Hu = Eu (H being possibly modified by a local perturbation) either
decays or increases exponentially. Then we get this property also for spectrally
almost every E, at least for almost every perturbation of H in some appropriate
class. Since generalized eigenfunctions are known to increase at most polynomi-
ally, it follows that this set of operators H has only pure point spectrum and
exponentially decaying eigenfunctions. It then remains to check if the previous set
of H has full measure when the parameters are chosen according to some given
random process.

In Sect. 2 below, we give the basic results for discrete and continuous one-
dimensional systems. Then in Sect. 3 we give with some details the proof for the
case of the one-dimensional discrete model with off-diagonal disorder and in
Sect. 4 the proof for the continuous one-dimensional Schrodinger equation.
Finally in Sect. 5 we apply the results of Sects. 2-4 to various specific random
distributions of the parameters, state some extensions and present the results for
multi-dimensional systems together with the applications.

2. Definitions and Results for the Discrete
and Continuous One-Dimensional Cases

Let us first introduce the discrete one-dimensional model with off-diagonal
disorder: It is the self-adjoint operator, acting on L2(Z), defined as

(Hfi)(n) = αn + 1φ + l) + αnφ-l), (2)

and we suppose for simplicity the an to be strictly positive. If u is a solution of the
eigenvalue equation Hu = Eu, then its components satisfy an equation of the form

where Mn is a two by two matrix called the transfer matrix which depends on αn,
an+ί and E.

Let B be a fixed interval of 1R and denote by L the normalised Lebesgue
measure on B. We assume the following hypothesis:

Hypotheseίs HI. The αw's (for n> 1) are such that for L a.e. E, there exists a vector
v = (u(l), u(2)) satisfying:

limsupn~1log| |MnMn_1...M2 ι;||<0. (3)
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In Sect. 3 we will prove the following basic theorem and in Sect. 5 we will give
examples of applications of it:

Theorem 1. Let HI be true: then for a.e. (aθ9aί,a2) and spectrally a.e. E on B any
generalized eίgenfunction of H decays exponentially at + oo.

The second model we consider in this section is the Schrόdinger operator on

H=-d2/dx2+V(x). (4)

Again any solution Ψ of HΨ = EΨ satisfies an equation

where M(x, y) is a 2 x 2 transfer matrix depending on the potential V in the interval
[x, y] and on the energy E. The corresponding hypothesis and basic theorem are:

Hypothesis HI'. The potential V(x) is such that for L-a.e. E, there exists a vector
Φ = (ψ(\\ ψ'(l)) satisfying:

limsuρx~Mog||M(x,l)Φ||<0. (5)
X->OO

Theorem V. Let hypothesis H'\ be true and set Hλ = H + λV0, where V0(x) has
support [0, 1] and is strictly positive on this interval; then for Lebesgue a.e. λ, for
spectrally almost every E on B any generalized eigenfunction of Hλ decays
exponentially at + oo.

Applications of Theorems 1 and Γ and extensions of them are given in Sect. 5
below. There the multi-dimensional case is also treated.

3. Proof of Theorem 1

Let P(dE) be the spectral projection for H, and set:

ύ. (6)

Since H is a real symmetric matrix, μkJ(dE) is a real measure and \μktl(dE)\ denotes
its absolute value. We first show that Theorem 1 is a direct consequence of the
following lemma:

Lemma 2. Let Hi be true; then for a.e. α0 and |μ0j ι(dE)\ a.e. EonB any generalized
eigenfunction of H decays exponentially at + oo.

Proof of Theorem 1 from Lemma 2. Since any non-identically zero solution of the
eigenvalue problem cannot be zero on two neighboring sites (all the απ's are non-
zero by assumption), the spectral measure is absolutely continuous with respect to

2ί2(dE). Also by definition of the spectral measure we have

> 2(dE) = a^2t ^dE) + a2μ2, 3(dE) .

Assuming Lemma 2, we get that for a.e. (aθ9aί9a2\ for |μί>ί+ι(dE)| a.e. E in B
(0^i^2) any generalized eigenfunction of H decays exponentially at +00.
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Consequently this conclusion holds for μiΛ(dE) + μ2ί2(dE) a.e. E, and hence for
spectrally a.e. E. This ends the proof of Theorem 1 assuming Lemma 2. Π

We now turn to the

Proof of Lemma 2. The proof relies on the following lemma that we will prove
later:

Lemma 3. The average of \μ0ti(dE)\ with respect to a0 is uniformly absolutely
continuous with respect to the Lebesgue measure, that is

ldaQ\μQΛ(dE)\£C dE. (7)

Indeed, assuming HI and Lemma 3 we have that for a.e. α0 then for |μ0 ±(dE)\-
a.e. E in B, the inequality (3) of the hypothesis HI is satisfied. Since
det(MπMπ_ ! . . .M2) = ajan is bounded from above and below, for |μ0> ^dE^-a.e. E
on B any solution of Hu = Eu decreases or increases exponentially at +00.
Furthermore, any generalized eigenfunction is polynomially bounded and thus
has to decrease exponentially at +00 for |μ0> 1(dE)|-a.e. E on B. This yields
Lemma 2 assuming Lemma 3. Π

We now prove the Lemma 3 :

Proof of Lemma 3. Let HL be the restriction of H to /2([ - L, L]) and let |μ£, ^(dE)\
denote the absolute value of its spectral measure; thus

|μo, ι(^)l = Σ δ(E-Ej) |f*/0)t</l)| , (8)
l£j^2L+l

where Ej and Uj are the eigenvalues and normalized eigenvectors of HL. As L goes
to infinity, the measures μ£5 ι(dE) converge vaguely to μ0? ±(dE\ so for any open
interval A

\μOΛ(A)\^limM\μL

OΛ(A)\. (9)
L-» + oo

Thus, by Fatou's lemma it remains to prove that there exists a constant C such that

Sda0 \μ^(A)\£C \A\. (10)

By (8) we have:

J da, - |μέ, ι(A)\ =$da0Σ δ(E - Ej) - N/0)u/l)| , (11)

where the sum in the right-hand side runs over all the eigenvalues in A. By Rayleigh
perturbation theory, Et is a smooth function of α0 (in the one-dimensional case all
the eigenvalues Et are simple, hence globally smooth and in the higher dimensional
case considered later they are piecewise smooth) and

(l). (12)

Thus:

J da0 Σ δ(E - Ej) |ιι/0)tι/l)| = (1/2) f Σ \dEj/da0\ da0 . (1 3)
Ej e A Z j t A
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Let nL(E) denote the number of distinct values of a0 for which E is an eigenvalue of
the corresponding HL. If some Ej does not depend on α0, dEj/da0 = 0 and nL=ao
but such values of α0 are in finite number so they do not affect either side of (13).
For any nonconstant Ej we can break it up into branches, where Ej is
monotonically increasing or decreasing with respect to «0; thus we get

\da0 \μL

OΛ(A)\=(ί/2)$dEnL(E). (14)
A

Since nL(E) is the number of solutions of det[#L(a0) — E] =0 which is a quadratic
polynomial in α0, nL(E) is at most two and Lemma 2 holds with C= 1. This yields
Lemma 3 and consequently completes the proof of Theorem 1.

4. Proof of Theorem Γ

We turn now to the proof of Theorem Γ. Since no solution of the stationary
Schrόdinger equation can be zero on an interval, it is equivalent to Theorem Γ to
prove that for any square integrable Ψ with support in [0,1], for a.e. /I, then for
(Ψ,P(dE)Ψ) a.e. E any generalized eigenfunction of Hλ decays exponentially at
-f oo. We denoted by P(dE) the spectral projection of Hλ. We also denote μΨ(dE)
the positive measure (Ψ,P(dE)Ψ). The proof relies on the following lemma
corresponding to the previous Lemma 3.

Lemma 3'. Let F be any bounded interval, and m(dλ) the corresponding normalized
Lebesgue measure on F. Let Hλ be defined as in Theorem 1'. Then the average of
μΨ(dE) with respect to λ is uniformly absolutely continuous with respect to the
Lebesgue measure, that is:

\dλμΨ(dE)^C dE. (15)

Proof of Theorem 1' from Lemma 3'. The proof is very similar to the proof of
Theorem 1: assuming Lemma 3' and HI', we get for a.e. λ in F, then for μΨ(dE) a.e.
E on B, (5) holds. That is, since detM(x, 1) = 1, any solution oίHλΨ = EΨ increases
or decreases exponentially at + oo. Since generalized eigenfunctions are polynomi-
ally bounded, they are exponentially decreasing at + oo for μψ a.e. E on B. Since F
is arbitrary, this proves Theorem Γ from Lemma 3'. Π

Proof of Lemma 3'. We introduce the operators H\ (with Dirichlet boundary
conditions at +L and — L) and the corresponding (discrete and positive) spectral
measures μψ(dE\ and we still have (see (9), (10)) for any open interval A,

J dλμΨ(A) ^ J dλ lim inf μ^(A) ^ lim inf J dλμ&A). (16)
F F L-> + oo L-> + oo F

Thus we have to prove that there exists a constant C such that

fdλμ!p(A)£C \A\. (17)
F

Now (8) becomes

- (18)
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where Ej and Ψj are the eigenvalues and normalized eigenfunctions of H\. Since V0

is positive and bounded from below, we get by Schwarz inequality

μfrdEϊ^C' ΣKE-Ej) f V0(x)\Ψj(x)\2dx, (19)
j [0,1]

where C'= J [| Ψ(x)\2/V0(x)']dx. And again by perturbation theory the integral in
[0,1]

(19) is equal to \dEj/dλ\ι thus we get

f dλμfrA) ^CΊdλY \dEJdλ\, (20)
F F j J

where the sum runs over the eigenvalues belonging to A. Denoting nL(E) the
number of values of A in F for which E is an eigenvalue of H\, we have

ldλμ^(A)^C^nL(E)dE. (21)
F A

But nL(E) can also be seen as the number of λ for which there is a solution Ψ of the
equation H^Ψ = EΨ on the interval [0,1] and with boundary conditions at 0 and 1
which are respectively the images of the Dirichlet boundary conditions at — L and
+ L by the equation H^Ψ = EΨ. Because the potential V0 is non-negative, such
solutions on the interval [0,1] are necessarily in finite number, uniformly with
respect to the boundary conditions at 0 and 1. Thus nL(E) is uniformly bounded by
a constant depending on A and F. This in view of (21) yields Lemma 3' and
consequently concludes the proof of Theorem Γ. Π

5. Applications - Extensions - The Multi-Dimensional Case

In this section we discuss the previous theorems and give some examples of
random systems fulfilling our hypotheses. We also indicate some extensions and in
particular we show how the results of the present paper do extend to multi-
dimensional cases.

We start with one-dimensional cases. Our Theorems are specially useful in the
case where hypotheses H\ or Hi' are fulfilled on both sides, that is at +00 and
— oo. Then since the intersection of two sets of full measure is still of full measure,
we conclude (both in the discrete and the continuous case) that the generalized
eigenfunctions have to decrease exponentially on both sides; thus they are square
integrable and are eigenfunctions so that the operator has only pure point
spectrum and exponentially decaying eigenfunctions. We give some specific
applications below:

Applications of Theorem 1. It is known that for large classes of ergodic random
sequences {an}ne% the Lyapunov exponent of the product Y[Mn of transfer matrices
is positive, so that HI is fulfilled on both sides with probability one for Lebesgue
a.e. E. The simplest case consists of an to be independent and identically distributed
random variables: the transfer matrices Mn are nevertheless not independent but
from a generalization [16] of Furstenberg's Theorem, for any E, with probability
one, a property such as (3) holds on both sides and thus by Fubini's Lemma it holds
with probability one, for Lebesgue a.e. E. This ensures that with probability one
the hypothesis H\ holds on both sides. In particular if the probability distribution
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of each an is absolutely continuous, Theorem 1 implies that (3) has almost surely
only pure point spectrum and exponentially decaying eigenvectors. The result is in
fact more general: if the probability distribution of the an has some absolutely
continuous component the same conclusion holds with a non-zero probability,
and because of ergodicity it thus holds with probability one. This may be
summarized in the

Corollary 1. Let H be defined as in (3), and let the an's be independent identically
distributed strictly positive random variables whose probability distribution has an
absolutely continuous component, then with probability one the spectrum of H is pure
point with exponentially decaying eigenfunctions.

In fact the positivity of the Lyapunov exponent and hence the almost sure
realization of hypothesis HI on both sides are known as soon as the sequence of
the αn's is non-deterministic [17-19]; on the other hand Theorem 1 only requires
in addition that the conditional expectation of (α0,α1,α2) given the remaining of
the sequence is absolutely continuous with respect to the Lebesgue measure (or
possesses an absolutely continuous component in the ergodic case). This allows us
to apply Theorem 1 to a much wider class of situations than those of Corollary 1
and to extend correspondingly the proof os localization.

Finally let us note that even in the case where the distributions of the απ's has no
absolutely continuous component, one still gets something from Theorem 1: since
the hypothesis HI is still satisfied on both sides, Theorem 1 implies that for almost
every value of α0, α1? and α2 and in particular for almost any (w.r.t. Lebesgue
measure) arbitrarily small perturbation of these three coefficients, H has almost
surely pure point spectrum and exponentially decaying eigenfunctions.

Applications of Theorem I1' i) We suppose now that the potential V(x) in (4) is
random and is given as a sum of potentials with compact support in [«,« + !]:

where F0 satisfies the hypothesis of Theorem Γ, and the λn's is given according to
any non-deterministic ergodic process. Then by a result of Kotani [17] the
Lyapunov exponent associated to the transfer matrices M(x, y) is positive for a.e. E
so that Hypothesis HI' is satisfied at + oo and — oo. If in addition the conditional
distribution of λ0 and λ1 has an absolutely continuous part, then from Theorem Γ,
we get that almost surely H has only pure point spectrum and exponentially
decaying eigenvectors.

ii) In fact Theorem Γ implies that as soon as the potential V is such that the
corresponding H has a positive Lyapunov exponent for a.e. E (for instance by
Kotani's result if it is not deterministic), then for a.e. λ the operator Hλ = H + λV0

gives rise to pure point spectrum.
iii) Some extension of Theorem Γ: In fact V0 need not to be bounded away

from zero as we assumed for simplicity in Sects. 2 and 4 because it is sufficient to
consider functions Ψ(x) such that J [\Ψ(x)\2/V0(x}]dx is bounded in order to

[0,1]

prove Lemma 3', and then to recover the entire spectral measure.
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Applications of the Ideas of the Present Paper to Other Types of One-Dimensional
Problems. In fact the ideas developed in the present paper have been presented in
the specific case of models with off-diagonal disorder and the case of the
continuous Schrόdinger equation; but they allow one to solve many other different
situations. As an example, let us note the following problem concerning a purely
diagonal disorder which can be solved according to the same ideas: consider the
Anderson diagonal model:

where b is a constant and {an} is a sequence of independent and identically
distributed random variables. If b is positive, it is not hard to extend the methods of
[1, 3-5] to prove localization when the distribution of the απ's have some
absolutely continuous component. However when b is negative, one must use the
methods of this paper and the above arguments carry out without any essential
changes. The issue is how to go from the fact that μjj(dE) 4-b- μj+ίj+ v(dE) is pure
point to the fact that μjtj(dE) is pure point. Without loss, we can suppose \b\ ̂  1. If
|Ϊ>|<1, we get that μ0>0(dE) — \b\nμntn(dE) is pure point; so taking n-^-f oo, we
obtain the result that μ0? 0(dE) is pure point. If |6| = 1, then μjj(dE) — μj+ltj+ ^(dE) is
pure point so the continuous part of μjfJ{dE) is independent of j and so, by
ergodicity a.s. independent of the αn's. But the positivity of the Lyapunov exponent
implies through Pastur's argument [20] that the spectral measure is almost-surely
orthogonal to any fixed measure. Thus the continuous part of μ7 j(dE) vanishes. As
a result, we see that if an has a purely absolutely continuous distribution, then H
has pure point spectrum. Π

Extensions to the Multi- Dimensional Cases. The model (3) can be extended to
higher dimensions becoming

(Hu}(x}=
for x and y in Zd. l

The ideas developed in the present paper allow us to extend the methods of
[1-2] to various such cases with off-diagonal disorder for multi-dimensional
systems.

As in [2], the analogue of Hypothesis HI is the hypothesis that for almost every
E in some interval the Green's function at energy E, GE(x, y) decays exponentially
with distance. More precisely let us consider that the coefficients aXty are given
according to an ergodic process and that almost surely for almost every E in A,

\GE(x,y)\<Cexp{~K\x-y\},

where C can depend on the realization of the set of coefficients and on x. If in
addition the conditional distribution fo the ax^y has an absolutely continuous
component, then H has almost surely only pure point spectrum and exponentially
decaying eigenfunctions in A. The extension of the argument of [2] is straightfor-
ward in the light of the present Sect. 3 above.

Such properties of decay of the Green's function for off-diagonal disorder have
been proven in [21] for independent random variables at sufficiently strong
disorder or small energy; there, in addition, -the pure point character of the
spectrum was also derived by a method different from the one of the present paper.
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