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ON THE SELFADJOINTNESS OF DIRAC OPERATORS 

WITH ANOMALOUS MAGNETIC MOMENT 


ABSTRACT.We provide a new proof of Behncke's remarkable result that the 
Coulombic Dirac equation with nonzero anomalous magnetic moment is essentially 
selfadjoint (on C ~ ( R ' ) ~ )for ut7j. value of the Coulomb charge. 

In this note we shall consider Dirac operators. In the simplest version, these have 
the form 

(1) H = Z . $ + m p +  V 


where? == -i6 on L2(R3) and H acts on L2(R3, d3x;c 4 ) . a,  /3 are 4 x 4 matrices, 

written in terms of the conventional 2 x 2 Pauli sigma matrices, a', as 2 x 2 blocks 

of 2 X 2 matrices: 


It is well known (see e.g. [ I ,  8, 91) that for V = e171-', (1) is essentially selfadjoint on 
C , " ( R ~ ) ~if and only if e G J3/4,and strange spectral properties occur if e > 1 
[ l l ] .  Indeed, it has been speculated that these difficulties have physical significance 
for the stability of the world if superheavy nucleii with charge Z > 137 exist (written 
back in conventional units Z = ea-' with a the fine structure constant); see 16, 101 
and the references therein. We feel that these speculations are ill founded for a 
number of reasons including the theme of this note. 

Equation (1) corresponds to the equation for an electron with magnetic moment 1 
(in units of Bohr magnetons), but it is known that the actual value is 1 + p where 
p = 0.001159 is called the anomalous magnetic moment [S] (understood from the 
point of view of quantum electrodynamics). Equation (1) in the presence of such an 
anomalous moment should be replaced by 1131 

with 
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Recently, Behncke [3](see also his papers [4, 161and the earlier work of Barut and 
Kraus [2]), discovered the remarkable result that if y # 0 and V = el.5-', then (2) is 
essentially selfadjoint on c , " ( R ~ ) ~(here C," = c,"(R3 \ (0)) for any e # 0). 
Behncke's analysis depends essentially on the central symmetry of V(2) = el.5-' 
which allows one to write (2) as a direct sum of (two-component) ODE's. He 
analyzes these new operators by the well-developed selfadjointness techniques of 
such ODE's (see e.g. Weidman 1151). Our goal here is to prove Behncke's result using 
operator theoretic methods. 

Absorbing p/2m into V, (2) finally becomes 

In order to study (27, it turns out to be useful to introduce operators of the type 

We first state (see Kato [7]for discussions of A-boundedness) 

PROPOSITION1. S is C-bounded with relative bound zero if and only if S+ is 
A +-bounded and S is A--bounded, each with relative bound zero. 

PROOF. IIC(rp+,rp-Ill2 = llA+rp+1I2+ IIA-rp-112 and IIS(rp+,rp-Ill2 = llS+rp+l12+ 
11s-rp-l12. 

This leaves the question of essential selfadjointness of operators of the form C. 

PROPOSITION2. An operator of the form C is essentially selfadjoint if and only if 
(1) (A-)* = A,, 
(ii) (A +)* = K. 

Moreover, (i) is equivalent to (ii). 
-

PROOF.The equivalence of (i) and (ii) follows from X** = 2 and X* = X*. The 
first assertion follows from the observation that C = (>+ i-)and secondly from the 
easy calculation that C* = (:? G:). 

REMARK.Nelson has noticed 1121 that the fact that C = (;, G) is selfadjoint if A is 
closed provides a trivial proof of von Neumann's theorem that A*A is densely 
defined as selfadjoint: Just notice that by the spectral theorem, if C is self-adjoint, 
then C 2is densely defined and selfadjoint. 

The final abstract result that we require is: 

PROPOSITION3. Let A, B be operators so that B c A*, A[D(A)] c D(B) and BA is 
essentially selfadjoint on D(A). Then B = A*. 

PROOF.By the last proposition, it is sufficient to prove C = (0, G) is essentially 
selfadjoint on D(B) CB D(A). Now C* = (:, :*) on D(A*) CB D(B*). Suppose that 
(u ,  u )  E D(A*) CB D(B*) with A*u = fiu, B*v = fiu. Let rp E D(A). Then 
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so u I( B A  + l ) [ D ( A ) ] ,violating the assumed essential selfadjointness of the posi- 
tive operator BA. Thus u and so u equal zero. It follows that C has zero deficiency 
indices so it is essentially selfadjoint. [3 

The standard angular momentum decomposition of Dirac operators when V ( x )= 

V (  Ix I ) ,  shows that the operator of (2') is unitarily equivalent (under a transformation 
taking C,"(R3) to CF(0,a))to a direct sum of operators H,,, indexed by j = 4, 
;, . . . and a sign u = $ (and with the space indexed by j occurring 2j + I times) 
with H,,, acting on L2((0,a),dr; C 2 )  by [2,3] 

where S + =- 2 m V ( r ) / p  Ifr m and 

where K (  j ,  u )  = u ( j  + 1/2) .  Define 

Then, on C,"(O, a),A*,3 A-  and 

where K$ = + 2 ~ r - ' v '  T V" - ( K ~ el?l-', then W - el?(-'( v ' ) ~  Ifr ~ ) r - ' .If V = 

for small 121 and 

for small 1.21; SO (6 ) is essentially selfadjoint on C,"(O, a )by well-known results (the 
usual argument is one-dimensional-see Reed-Simon [14, Theorem X.101, but there 
are multidimensional arguments which apply also-see Reed-Simon 114, Theorem 
X.301). Moreover, by (7 )  

so ,. Bis a form bounded perturbation of v2 Thus. by Proposition 1.3, we have 
proven Behncke's theorem: 

THEOREM5. If p # 0 and V = el?[-' ( e  # 0),  then (2 )  is essentially selfadjoint on 
c ( $ ( R ~ ) ~ .  

The difficulties with noncentral potentials is shown by the fact that while (7) ,(8) 
hold for each value of j ,  they are not uniform in j. 

We end by noting that one can compare our proof with that of Behncke [3]by 
noting the conditions under which our respective arguments apply. Behncke re- 
quires: 

( B l )  V ,  V '  E L?,(O, w ) ,p # 0 ;  
(B2)Sgn V '  constant near 0;  
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(B3) lim,.+,,+ (rVt(r)) = co = limy+,,+ lVt(r)/V(r)l. 
Our proof requires (if one uses Wiist's Theorem [14, Theorem X.141 in borderline 
cases to add on S) 

(GST1) V" E L:,, (0, a),p # 0, 

(GST2) Vzf ( r )  > 3/4r - d for some d and r small or the same result for Ve;, 

(GST3) Ve$(r) - V2(r) 2 - ( 4 F 2 )  - d for some d where Ve$ are defined by (5 ) ,  


(61, i.e., 

V" E L:, in (GST1) can be replaced by V" E L:,,(O, co) using standard tech- 
niques. 

Since Behncke has no conditions on V", his results are, in a sense, stronger. But 
curiously, he does not allow V = 0 or V = [ln(lrl-' + 2)Ia with a < 1while we do. 

One of us (F.Gesztesy) would like to thank R. Vogt, W. Luxemburg and B. Simon 
for the hospitality of Caltech during a visit in April 1983. 
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