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1. THE BASIC THEOREM 

There are two cases where it is well known that Schriidinger operators 
have non-degenerate eigenvalues: The lowest eigenvalue in general dimen- 
sion and all one-dimensional eigenvalues. One can ask about making this 
quantitative, i.e., obtain explicit lower bounds on the distance to the 
nearest eigenvalues. Obviously, one cannot hope to do this without any 
restrictions on V since, for example, if 1 is the characteristic function of 
(- 1, 1 ), one can show that, for I large, - &/dx’ - x(x) - x(x - Z) has at 
least two eigenvalues and E, -I$, 40 as I--+ co (see, e.g., Harrell [7]). 
Thus, we ask the following: Can one obtain lower bounds on eigenvalue 
splittings only in terms of geometric properties of the set with V(x) < E (E 
at or near the eigenvalues in question) and the size of V on this set? We 
will do precisely this for the two lowest eigenvalues in general dimension in 
this paper, and we have proven results on any one-dimensional eigenvalue 
in [ll]. 

This is not the first paper to try to estimate the gap E, -E. for -A + V; 
see, e.g., [8, 16, 9, 193. Here we will present a very elementary device which 
is also quite powerful. It depends on the fact that many SchrGdinger 
operators can be realized as Dirichlet forms. This subject has been studied 
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by many authors, e.g., [2, 5, 6, 31. Here we quote some results of Davies 
and Simon [3, Proposition 4.4 and Theorem C.11. The class K, is discussed 
in [3, 151. 

THEOREM 1.1. L&H=-d+V, V-EK,, V+EK~andletH$,=E,$, 
for a positive L2 function, tiO. Let A be the operator on L2([wy, $i d”x) with 
D(A)= {f I f$,,ED(H)} and Af=ti,y’(H-E,J(f@,). Then 

Q(A)= {f~L2(W, $68~) 1 vf~L2(W, y+l”x)} (1.1) 

and 

tf, Af) = 1 (Vf )2 +; d”x. (1.2) 

THEOREM 1.2. Let HO be the Dirichlet Laplacian for a bounded region 
US R”, and let H,,$, = E,II/, for a positive L2 function $O. Suppose that 
tiO(x) + 0 as x -+ au. Let A be the operator on L2(U, t+Gg d”x) with 
D(A)= If I f&D(H)) and Af= $;‘(H,,- E,,)(f+,). Then Q(A)= 
{feL2(U, JIid”x) 1 VfeL’(R”, $:8x)} and 

tf, Af) = 1 (Vf )’ Ic/; d”x. 

Remarks. 1. Vf is intended in a distributional sense. 
2. There are geometric conditions on U which imply that $,,(x) + 0 

as x--t au; see Corollary C.4 of [3]. 
3. Theorem 1.2 and its proof in [3] extend to H= HO + V with 

VE K,. 
4. Similar theorems hold with periodic and Neumann boundary con- 

ditions (where, for periodic boundary conditions, we must think of the 
operator on a torus) with Vf a distribution on the torus (including possible 
singularities at the boundary of the cube stitched to a torus). 

Since A is unitarily equivalent to H- E,, we obtain a variational 
principle for the gap: 

COROLLARY 1.3. E, - E, = inf{j (Vf)2$~d"~/~f2$~d"~I f f$i=O}. 

It is this variational principle first exploited by Kac and Thompson [lo] 
and more recently by one of us [16] that we will use here. We will call a 
general operator H, so that H - E,, is unitarily equivalent to an operator 
with Q(A) given by (1.1) and A given by (1.2), an operator related to a 
Dirichlet form. Our basic comparison result is: 
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THFOREM 1.4. Let H, R be two operators related to Dirichlet forms with 
lowest eigenvalues E,, E, (resp. &, E,) and lowest eigenfunction $,, (resp. 
3,). Let a(x) = $,, $;’ and 

Then 

a + = max a(x); a _ = min a(x). 
x x 

Remark. In all cases of interest, a(x) is continuous, which is why we 
write max for a, rather than sup. 

Proof. Let b(x) = $i $0’) where $i is the eigenfunction of H associated 
to E,. Then we can find a so 

I [a + b(x)] $$ d”x = 0. 

Let c(x) = a + b(x), 

El-E,+c)2&?x jC2&PX i 
= 1 wc)26h’h?)2 9% 8x1, c2a9h?)2 II/; 8x 

< (a+/ap)2 J (Vc)’ *i #x/j c2 tj&$Sx 

=(a+la-12 C(El-&Y(a2+l)1 

<(a+/a-J2 (El -Ed. 

Let ii(x)=a(x))’ so ii, =a:‘, ii _ = a; l. Reversing the roles of H and R 
in the above arguments 

which is the other desired inequality. 1 

Despite the simplicity of this argument, it is quite useful. In the next sec- 
tion, we use the theorem and its strategy to find new bounds on the lowest 
band in a solid. In Section 3, we prove bounds on a special situation which 
we use elsewhere [ll]; actually, it was this application that motivated the 
present note. In Section 4, we prove bounds that answer the question raised 
in the first paragraph of this section. 
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The methods and results of this paper carry over to the case of finite dif- 
ference Hamiltonians on a lattice Z”. Let h,-, denote the finite difference 
Laplacian, i.e., 

h,u(n)= - 1 [u(n+cr)-u(n)], 
Ial = 1 

and set h = h, + V, V multiplication by the function (sequence) V(n). If Q 
denotes the ground state of h and E,, the ground state energy, then the 
corresponding Dirichlet form is given by 

(u,Au)= c [i] Q(n) a(n + 6,)(u(n + Si) - u(n)l’ ncZ” i=l 

with A=Q-‘(h-E,)Q. 

2. THE GROUND STATE BAND IN A SOLID 

Let H= - (2m)) ’ A + V(x), where V(x) is periodic on R’, i.e., 

V(x + a) = V(x) 

for a in some lattice, L, i.e., a discrete subgroup of R’ spanning R” as a real 
vector space. Let L* be the dual lattice, i.e., KE L* if and only if K. a E 2nZ 
for all UE L. Let B be the Brillouin zone, i.e., 

B= {kEIW”I Ikl <dist(k, L*\(O))). 

It is well known (see, e.g., [13, Sect. X111.161) that 

L2(R’, d”x) 2: I@ Sk &k; H= 
s QI H(k) d”k, 

B B 
(2.1) 

where the H(k) are operators we will describe later. They have discrete 
spectra and their eigenvalues .q,(k) <El(k) < . . . are called band functions. 
We want to prove the following in this section: 

THEOREM 2.1. Let I++~ be the positive periodic solution of H$, = ~~(0) tiO. 
Then 

(u-/~+)~(2m)- k2 d co(k) -E,,(O) < (2m)-’ k2, (2.2) 

where a + = Zf C&3(x)1. 
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It often happens that for reasons of symmetry (d’s,,/%, X,)(O) is a mul- 
tiple of the identity matrix, in which case the “effective mass” is defined by 

I, = q,(k) + (2m,&’ k* + O(k3). 

(Actually, the physical effective mass is associated with the curvature of 
bands higher than E,,.) 

COROLLARY 2.2. m < meff < (a + Ja ~ )’ m. 

We also note that (2.2) implies that CO(k) isn’t flat (constant). For 
general E,, this is a result of Thomas [ 181 proven by rather different means. 

Proof of Theorem 2.1. We need to describe (2.1) in more detail 
[ 13, 171. Define the Wigner-Seitz cell by 

C= {x~lR”( 1x1 <dist(x, L\(O))}. 

Then %jj= {$E&(R”) 1 $(x+a)=eik.“Ic/(x); all MEL} with inner 
product 

($9 (P)k = s, VG) cp(x) d”x 

and 

H(k) $ = [ -(2m)-’ A + V(x)] $, 

where H(k) (suppose V is locally L”* if v 2 5, L* if v = 1, 2, 3, Lp, p 2 2 if 
v = 4) has a domain { $ E Xk 1 A$ E &}. Let $,, be the positive periodic 
solution of H$, = ~~(0) J10 (i.e., lc10 is the lowest eigenfunction of H(0)) and 
define 

but with the inner product 

(f, g>l;= p(x) g(x) Ii/;(x) 

and the operator A(k) on =@k by D(A(k)) = {f I fJ10 E D(H(k))} and 

A(k) f= ti,’ (H(k) - dO))C.Nol~ 

Then, as usual, one can easily show that 

QGW)) = U-IV-~ K> 
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and 

(f, A(k) f) = Pww?flIE)2. 

401 

(2.3) 

Taking f= eik.x ES& we see that 

dk) - -q(O) = inf((f, A(k) f) I Ilfll~= 1) 6 Ch-’ k2. 

On the other hand, iffis the lowest eigenfunction of ,4(k), we can usef as 
a trial function for A,(k) (the A(k) associated to V=O), so 

(2m) - ’ k2 d j-- (V’)2 &x///-~ 8.x 

~a~2jc(vfP*;LPxja;’ jcf’*;d’x 

= (a+ la- J2 Cdk) - dO)l, 

yielding the other bound. l 

We will describe this application in detail for the discrete case, expanding 
on the remark in the Introduction. 

LEMMA 2.3. Let 

@au)(n) = - c CO + a) - u(n)1 
Ial = 1 

on i2(Zy). Let V be a periodic multiplication operator, and let Q2, be the 
positive periodic ground state of H = H, + V with Hs2, = E&2,. Then for 
UE-%, 

(Gs (H-Eo)(%~))= 1 i Qdn)Qdn+Si) l~+~,-u,l~. (2.4) 
nEZ”i=l 

ProoJ: Without loss, take u real-valued. For simplicity we take k=O; 
the proof is similar for general k, and we write n + Si models the periods of 
V. Let Di and Vi be defined by 

(Dif J(n) =f (n + ai) 
Vi=(Di-1) 

so h,= -x(Di+D,F-2) 
A straightforward calculation shows that 

CDi, Sl = Fig) Di 
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C CDi, u]Y u] = (viu)2 Di 

(‘03 CCDiY ‘19 ‘1 ‘Cl>= 1 I(Viu)(n)12B,(n)SZ,(n+6i). 

neP 

Because of the sum over n, we get the same formula for 0:. Thus 

(a,, [[Ho, u] u] Q,) = -2(rhs of (2.4)). 

But [[(H-E,), u], u] = [[H,, u] u], so expanding the double com- 
mutator and using (H-E,) !&=O, we obtain (2.4). 1 

THEOREM 2.4. In the above case, let Eo(k) be the band function for the 
ground state band of H. Then 

(a ~ la + 1’ E,(k) < q,(k) - @) < b(k), 

where E,,(k) = 2v -C;=, cos ki is the free ground state band and 
a,=%; a,. 

ProoJ Given the lemma and [eikCG8+‘)- eikn12 = 2 - 2 cos k,, the proof 
is identical to that of Theorem 2.1. 1 

3. BOUND ON SOME NEUMANN LAPLACIANS 

In our study [ 121 of Lifshitz tails for random plus periodic potentials, 
we require lower bounds on the gaps of some Neumann Laplacians whose 
dependence on the region’s diameter is qualitatively similar to that for free 
Laplacians. Our comparison theorem is ideal for this. We state the general 
v-result here. In [12], we give a more general result in one dimension. 

THEOREM 3.1. Let V(x) obey V(x+a)= V(x) for all aEH” and 
V( *xl, +x2, .*., - +x,) = V(x). Let Ej‘) (L= 1, 2, . ..) denote te (j+ 1)st 
eigenvalue of -A + V in the box BL = {x IO 6 xi < L} with Neumann boun- 
dary conditions. Then, for some u > 0, 

EIL’ - EbL) > uL-~. 

Remark. If f (x) is spherically symmetric and 1 f (x)1 < c(1 + Ix~)-“-~, 
then V(x) = C,, zy f (x - a) obeys all the hypotheses of the theorem. 
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Proof Let tj,, be the positive periodic solution of (-d + I’) $0 = E, 1(10 
with E, the ground state energy of -A + V (on (WY). Then 
1(/d AI x1 9 aa.7 +x,) = tiO(x), by the hypothesis on V and the uniqueness of 
this periodic solution. Thus, tiO obeys Neumann boundary conditions on 
the boundary of B,, so EiL) = E, and qr. = tiO I B, is the ground state. In 
particular, [min(~L)/max(~L)]2 = L? is independent of L (by the periodicity 
of $,,). Applying Theorem 1.4 with 8= 0 (Neumann b.c.), we see that 

E, -E,, 2 I&!?, - &) = ~?(z/L)~ 

as desired. 1 

4. TUNNELING BOUNDS 

In this section we want to describe how to obtain explicit lower bounds 
on the gap depending only on the geometry of the set, C, where V(x) <El 
and the maximum value of 1 V(x) - El on the convex hull of C and E in the 
gap. 

As a warm-up, we consider a periodic potential V(x) obeying 

V(x+aL)= V(x) for all a E Z’. (4.1) 

We let z, denote the volume of the unit ball in v-dimensions. Let G(x) be 
the integral kernel of (-A + 1))’ and let C, = [ I( 8’~. 

THEOREM 4.1. Set m = 4 in Theorem 2.1. Then, if AL 3 (2C,)-‘, 

[ 1 ‘- ~~~,(4C,)-‘(nlLJ;)-‘12exp(-fI.J;L), - 
a+ 

where 2 = max, I V(x) - EO I 1/2. 

Remarks. 1. This yields a bound on the band size O(e-‘JL) for I 
large. The analysis of [7] shows that no lower bound of the form 
O(e- Cl -‘JL) can hold. 

2. If ilL< (C,&)-‘, the proof below shows that [a-/a+]> 
1 - (C, & LL). Moreover, the proof shows that 1 can be replaced by any 
number larger than maxi V(x) - E, I “2. 

We turn to the proof of Theorem 4.1. For later use, we single out the 
following lemma: 
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LEMMA 4.2. Let V be a bounded potential (not necessarily periodic), and 
let E be an eigenvalue of -A + V with eigenfunction tj. Then 

IlWllm~2C,P IIILII, 

if 1 V(x) - El “* < p. 

Proof (Lemma). From 

(-A+p2)$=(E-V(x)+p2)~ 

we see that 

where G(‘) is the kernel of (-A + p’)-l. Hence 

IWb)l < 2~’ j+ IV@)(x)l dx lItill to 

G2C”P IIIcIllm 

by scaling. a by scaling. a 

Proof (Theorem). Proof (Theorem). Normalize $,, so that Il$Olloo = $,,(xO)= 1. By the Normalize tie so that Il$olloo = Go(xO)= 1. By the 
lemma, if Ix - x, 1 < 1/4C,A then l(lO(x) >, f. By hypothesis, (4C, A)-’ < L/2, lemma, if Ix - x0 1 < 1/4C,A then l(lo(x) >, f. By hypothesis, (4C, A)-’ < L/2, 
so the sphere of radius (4C, 2))’ about x0 and its translates are all disjoint. so the sphere of radius (4C, 2))’ about x0 and its translates are all disjoint. 
For any y and T, For any y and T, 

> e-i.2T 
5 

epTHo(y, x) $o(x), 
c 

(4.2) 

where Ho is the Laplacian on C= {xl (xi1 <L/2} with periodic B.C. Since 
some translate of x0 is within $ L & of y, we have that 

e -THo( y, x) 2 (47tT)-Y/2exp( - (+ L &)2/4T) (4.3 1 

by the method of images. Looking at the contribution of (4.2) from the set 
of x with (x-x01 < (4C,1)-’ (where e. 2 i), choosing T= L A/42, and 
using (4.3), we obtain the required bound on a_. 4 

Now we turn to the announced tunneling result. We consider a 
Schrodinger operator H= - A + V with V bounded. We assume that H has 
at least two eigenvalues below its essential spectrum. We denote by E. and 
E, the lowest eigenvalue and the second, respectively. It is well known that 
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E,, is non-degenerate (see, e.g., Reed and Simon [ 13)). In certain tunneling 
situations the difference E, -E,, is exponentially small (see, e.g., [16]). We 
will apply Theorem 1.2 to prove that in any case E, -E, is not smaller 
than an exponential. The exponent we obtain is not too far from the typical 
“tunneling exponent” and one might hope that the difference El - E, can 
never be smaller than in the tunneling case. This was proven to be true in 
[ 11 J for the one-dimensional case, where we used ODE techniques. 

Let us denote by eO, $i the ground state and the first excited state of H. 
We normalize Go, $1 such that $0 20, Il$OIlm = 1, ll$l (Iuo = 1. Moreover, 
by shifting space we may assume that $,,(O) = 1. Let us denote by n, a 
point where It+G,(xi)l = 1 and by x,, a point where $i(xO)=O. Note that IJ, 
must have zeros. By normalization we may assume that el(xl) = 1. We set 
f(x) = $o(x)rl @l(X). 

Let us denote B, = {x~ IX”1 V(x) > E, +E~}. B, is a bounded set for E 
small enough. We fix such an E > 0. Let us denote by C = C, the smallest 
closed ball containing B, and by R its radius. 

PROPOSITION 4.3. The maxima of $. and $, and at least one zero of t+b 1 
are contained in C. 

Proof: Outside C we have V(x) - E, 2 e2 > 0 so 

~l(/o=(w--o)~o>o forx$C. 

Thus tiO is a subharmonic function outside C, and hence Go assumes its 
maximum over Cc on the boundary. Moreover, since A+, = 
(Vx)-EE,)til, we have for ($,)+ =max($l,O), (IcI1)- =max(-til,O) 
(see, e.g., Lemma 2.9 in [ 1 I): 

and 

A($,)- a(W)-E,)((//,)-. 

It follows that $i assumes both its maxima and its minima inside C. Since 
C is convex, $, has also a zero in C. 1 

By the above proposition, we have that x1, 0 E Rd belong to C(or even to 
B, for any E > 0). We may furthermore assume that x0 E C. 

We will make use of this proposition in estimating tiO and IVfl from 
below. From Theorem 1.2 we have 

580/75/2-I3 
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We estimate the various pieces of the right-hand side of (4.4) in the 
following propositions: 

Let us start with a lower bound on tiO. We set 

1, = sup xeRd EE;yE,, I Vx) - 4 1’2. (4.5) 

PROPOSITION 4.4. For any 12 1, we have 

$0(x) 2 Mdl-4 + a)- ’ e 
Y 2 -J2AlxI 

3 (4.6) 

where a = (4C, A)-’ and M, = 5 (~“/(27r)“/~) u”~‘~~,I’~~ e-2-3’Zc;‘. We set 
M,(Ixl)=Mo*(lxl +u)-“2. 

Proof Let E, denote the expectation with respect to a v-dimensional 
Brownian motion starting at x. By P, we denote the corresponding 
probability measure. Then, by the Feynman-Kac formula, 

hA-4 = W ‘(H-EO)$jO)(~) = (E,(e-Ib(V(b(s))--o)*~g(j(t))), 

where b stands for a Brownian motion. (For standard facts on Brownian 
motion and the Feynman-Kac formula we refer to [4, 143.) 

This can be further estimated by 

$()(x) 2 eCrA2 L(ICl,(Nt))) = (*). (4.7) 

To estimate the last expectation, we recall that @JO) = 1 and that 
IVll/ol $2C,I by Lemma 4.2. Thus we have $,,(x) > 4 for 1x1~ 1/(4C,i) = a. 
Using this, we see 

(*)>e-‘” 
21 
2 P,(lb(t)l G a) 

1 ~ 0.2 1 z-e 
2 (27ct)Y’2 i lyl so e 

- Ix -y12P dy 

1 1 
yyav(2Xfe 

-r1*- (1x1 +ay/2r 

We choose t = ([xl+ u)/a A), the choice which minimizes the exponent, 
getting 

To get estimates on J I# dx, j II/: dx from above, we give an upper bound 
for $,Jx), $r(x) for x large enough. For this, we denote by d(x) the dis- 
tance of x from the set B. 
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PROPOSITION 4.5. Zf x q! B, then 

Ml(X)1 G( 1+&&2-‘~4~i’+Ei)-7~4)exp( -&&qx’). (4.8) 

The same estimate holds for tiO. 

Proof: We prove the assertion of the proposition for $ I . The proof can 
be taken over literally for eO: 

Itil( = le- ‘(H-EI)$~(X)I ~~,(e-S~(V(b(s)--l)ds)l(~~l(~ 

~e-‘“*P,(b(s)4BallO6s~~) 

+ e’“*P,(b(s) E B some 0 <S 6 t) 

de-“* + e’“*P,(b(s) E B some 0 d s G t). 

Let us denote by b”‘(s) the coordinate of b along the line through x 
normal to B. b(‘) is a one-dimensional Brownian motion and 

P,(b(s) E B for some 0 <s 6 t) 

d P&‘)(b”‘(s) > d(x) for some 0 6 s Q t) 

6 2P&1’(b’1’(t) 3 d(x)) (see, e.g., Durrett [4]) 

2d d fi d(x) eCd(x)2’2’ 

by standard estimates on the normal distribution. 
Thus we obtain 

I$I(x)l <e-“‘+ M e - d(x)2/2t + 112 
&d(x) ’ 

Choosing t = d(x)/& ,/m we get 

II)~(x)[ ~(1 +&2-1/4(J2+E2)-116) e-(&*Idm)d(x). 1 

As a corollary we obtain the desired bound on the L2 norms of tiO and 
$r. Let us denote by r, and o, the volume and the surface area of the unit 
ball, respectively. 

We set, for short, a = E’/($ Jm), b = 1 + fi 2-“4(A2 + E~)-~/~. 

We estimate 

s l&(x)12dx<z,(R+ 1)’ 
Ixl<R+l 
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(recall that 11+1 II co = 1) and 

< b2e2aRmV r Y - 1, _ 2ardr 

(we used 1: xnepax < (C,) x;feea-‘O for x,, > 1). This gives the desired result. 
Finally, we turn to a lower bound for j [Vfl dx. To obtain such a bound, 

we will integrate Vf along a tube, Y-, of the following form: Take 
Y~~,E~“. Set BAY~~Q-Y~)=~ XE[W”I Ix-~,I<E; xl(y,-y,)} and 
Y={x+t(y,-y,)Ix~B,(y,,y,-y,)t~[O,1]}.Obviously 

G( inf 
xEBc(Yo,Yl-YO)‘ 

f(x) - sup f(x)) T”- I&“- l 
xE~e(YllYl-YO) 

Thus, we need estimates on inffand supfon suitably chosen regions. 
Since til(xO) = 0, we have j-(x,,) = 0. Moreover, we know $,(x,) = 1 and 

~ob,)~ 1, sof(x1)2 1. 
To get estimates on f near x,, and x1 we observe that 

where we used Lemma 4.2 and Proposition 4.4. 
We have proven 

LEMMA 4.6. For x E B we have 

IVf (x)1 <s(l+&)eJiiln. (4.9) 

Calling a(R) the right-hand side of (4.9), we conclude that f(x) < f for 
[x-x0( < 1/4a(R) and f(x) >: for Ix--x1 ( -=c 1/4a(R). Therefore, we find 
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balls of radius at least l/&z(R) inside C where f(x) < $ resp. f(x) > a. 
Integrating along a tube connecting these balls, we obtain 

s 1 1 
IVfl dx> (8a(R))‘-, z,- 1’5’ 

Collecting the various estimates, we arrive at 

THEOREM 4.7. Suppose V is a bounded potential A > &. Then 

E, - E, 2 C(R) e-‘fivAR, 

The factor C(R) is bounded by a polynomial in R. 

We refrain from stating the explicit form of the factor C(R) which is, of 
course, given in various pieces in the above calculations. 
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