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COUPLING CONSTANT(l) 

BY 


LON ROSEN A N D  BARRY SIMON 

Abstract. We consider hamiltonians HB=Ho+ ,3HI(g),where Ho is the hamil- 
tonian of a free Bose field $(x)  of mass m> 0 in two-dimensional space-time, H I ( g )  
= jg(x):  P($(x)):  dx where geO is a spatial cutoff and P is an arbitrary polynomial 
which is bounded below, and the coupling constant ,3 is in the cut plane, i.e. /3# negative 
real. We show that HB generates a semigroup with hypercontractive properties and 
satisfies higher order estimates of the form I H o N r R ; <co, where N is the number 
operator, R,=(H,+b)-l ,  r a positive integer, and ,3, s, and b are suitably chosen. 
For any 0 5  @ < P, RB converges in norm to Ro as +0 with larg ,3I (= 0.Finally 
we discuss applications of these results and establish asymptotic series and Borel 
summability for various objects in the real ,3 theory. 

1. Introduction. Let +(x) be a free Bose field of mass m >O in two space-time 
dimensions, and let Hobe the corresponding hamiltonian : Ho=J" p(k)aS"(k)a(k) dk, 
where p(k) =(m2+k2)li2. Define H , ( ~ )=[g(x) :P(+(x)) : dx, where g E C,"(9?) 
is real-valued and P(y)=b2ny2n+b2n-ly2n-1+.. . +bo is a polynomial which is 
bounded below, i.e. b2, >0. It can be shown [2] that HI(g) is a selfadjoint operator 
on a suitable domain. We shall also assume that g(x) 2 0 so that HI(g) is formally 
positive. Although the Wick ordering destroys this positivity, HI(g) has an "almost 
positive" character made precise by Nelson's remark [7] that if Re ,820 then 
(no, exp (-PH,(g))Qo) is finite, where 0, is the Fock vacuum. The hamiltonian 

with positive coupling constant /3 plays a central role in the construction of the 
P(+), field theory without cutoffs. H, has been extensively studied and proved to 
be selfadjoint [I], [S], [9], [lo], [13]. (See [2] for further references and a summary 
of recent progress.) 

Our purpose in this note is to study H, for complex /3 in the cut plane, i.e. P not 
equal to a negative real. (Even the nonrelativistic analogue, p2 +x2 +px4, is mis- 
behaved when ,8 is a negative real [12].) Previous to our discussion the following 
results have been obtained for complex coupling constant by B. Simon and R. 
Hoegh-Krohn : 
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(a) [13] H, is a sectorial operator with numerical range contained in a sector of 
opening angle not greater than arg 13; 

(b) [13] As Ipl -+ 0 with larg PI S ~ / 2 - e ,  (H,-2)-I -+ (H0-z)-l in norm, for 
z E res (H,) ; 

(c) [ l l ]  In the special case of P(y)  =y4, the resolvent convergence of (b) holds 
for IargPI ST-e .  

We work with the two equivalent representations of the P(4) theory (cf. [2]). 
The first is Fock space F=C,"=, @Fnconsisting of a direct sum of n-particle 
spaces; on F,Hois a multiplication operator. The second is "Q-space" or L2(M, p) 
where p is a probability measure on M; here the fields +(x) and hence H,(g) are 
multiplication operators. Our approach is to exploit the "smoothing" properties 
of Ei, and H, in each of these representations. On F ,  HEH, is smoothing in the 
sense that for sufficiently large b >0, (H+b)- l  maps D(Nr) into D(Nr+l),  

Here N is the number operator: N=n on Fn.On L2(M, p), Hois smoothing in the 
sense that, for sufficiently large t >0, 

(1.3) exp (- tHo):L2(M, p) +L4(M, p) 

and similarly for e-tH if t is suitably chosen. 
Higher order estimates, typified by (1.2), have been proved in the case of real /3 

in [9]; the method of hypercontractive semigroups whose starting point is (1.3) 
has been studied in [lo] and [13], primarily in the case of real P. In 92 we sketch 
an extension of the latter method to the P(4) theory with ,8 in the cut plane; this 
allows us in particular to obtain the result (b) above for larg /31 ST-&.In 93 we 
show that the higher order estimates carry over to the case of complex /3 with the 
most complete results being obtained for the 44theory. 

Our reason for studying the complex P theory is not that we feel it is intrinsically 
interesting but rather that it can be used to study properties of the analytic con- 
tinuation of various objects in the real ,8 theory. For instance, properties (a)-(c) 
above have already been used to prove [13] that for the P(4) theory the ground 
state energy and the equal time vacuum expectation values (VEV) of the fields 
have asymptotic series in larg PI 671.12- e; and [ l l ]  that for the 44theory this series 
for the ground state energy is Borel summable. In 994 and 5 we similarly consider 
applications of the results of 992 and 3. Thus we extend the region of validity of the 
various asymptotic series to larg PI 5 T- e and we prove Borel summability of the 
e q u ~ ltime VEV's. 

2. Hypercontractive semigroup techniques. We first recall the definition and 
basic properties of a hypercontractive semigroup (see [13]). Let Ho2 0  be a self- 
adjoint operator on L2(M, p) where p is a probability measure on M. The set of 
operators {exp (- tHo) I t 2 0) is a hypercontractive semigroup if exp (- tHo) is a 
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contraction on L1(M, p) for all t 2 0 and if, for some T >  0, exp (-THO) is a con- 
traction from L2(M, p) to L4(M, p). From these two assumptions it follows by 
interpolation that in fact exp (- tHo) is a contraction on LP for all 1 5 p  6 co and 
t 2 0 ,  

(2.1) Ilexp (- tHo)*llp 5 ll*llP. 


Moreover for any p > 1 and q < ac, there is a T >0 such that for t 2 T 


This smoothing property holds as well for small t provided that q is not much 
larger than p in the sense that q-p= O(t). 

Consider now "complex time" z withfixed argument 8, 

Regarded as a semigroup in t =  lzl, exp (-zHo) also enjoys the above properties 
with some slight modifications. For by applying the Stein Interpolation Theorem 
to f(s)=exp (- tH0eimD)we find that exp (-zHo) is a contraction on LP provided 
that (see Stein [14]) 

(2.4) (1 - [ 8 1 / ~ ) - ~  5 ~ / l 8 [ .s 
Since exp (-zHo)=exp ( - t  cos OHo) exp (-it sin OHo) we see from (2.2) that, 
for any q < co and p =2, there is a T such that 

when t cos 8 2  T. By duality and interpolation we can extend (2.5) to the case of 
arbitrary p > 1, as well as to the case of small lzl provided that p satisfies (2.4) and 
q is not much larger than p. 

It is thus possible to apply the methods developed for the perturbation of hyper- 
contractive semigroups [lo], [13]: If Ho is the generator of a hypercontractive 
semigroup, we consider perturbations Ho+ V where 

(2.6) VE LP(M, p) for all p < co 
and 

(2.7) e-zVE L1(M, p) for all t = 121 2 0, arg z = 8. 

Define H to be the closure of the sum 

where 9=D(Ho) n D(V). We can then prove 

THEOREM2.1. Under the above assumptions on Ho, V, and z, H is the generator 
of a semigroup e-zH on Lq(M, p) which is strongly continuous and exponentially 
bounded in lzI provided that q is in the interval 

(2.9) Z(8) = ((1 - 181/~)-17~/18l),  
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i.e. there is a constant a > 0 dependent on 0 and q such that 

(2.10) 	 i!e-zfT$iiq5 alzl l;#iiq. 

We now specialize to the quantum field case with V=PH,(g), where the coup- 
ling constant /3 is in the cut plane, /arg PI < n. It is known [2] that V satisfies con- 
ditions (2.6) and (2.7) provided that Re (zp)LO. Thus exp (-zHB) satisfies (2.10) 
when z =  teZQ lies in the cone 

(2.11) C = {z / 101 < n/2, 16+arg PI $ 7712). 

It follows from standard semigroup theory that the L2 spectrum of HB lies in the 
cone C '  dual to C with vertex at x = -inf log a, 

C' = {z' 1 Re ((2' -x)z) > 0, for all z E C). 

This result we recognize as being essentially property (a) of $1 which was established 
more directly in [13]. 

We collect here some additional properties of the hamiltonian H, niost of which 
are also valid in the abstract hypercontractive setting (the argument 6 of z is 
regarded as being fixed in (-71.12, ~ 1 2 ) ) :  

(i) (Smoothing property.) Suppose that p, q lie in the interval I($) of (2.9). Then 
there is a T>O such that if Izi ZT, e-"" is a bounded operator from LP to Lq. 
Given p, the same is true for small t > 0 provided that q -p =O(t). 

(ii) (Continuous dependence on V.) Suppose that {V,) is a sequence of functions 
on M such that for each p < co and t = /zj2 0 

(2.12) lim /iV,-VIIp = 0 and sup /lexp(-zV,);ll < co. 
j - 	 m I 

Define H, =Ho+ I/,. Then for all t 2 0 and p, q E I(0), 

(2.13) 	 exp (-zH,) -t exp (-zH) 

in the sense of norm convergence as operators on Lp, and, for sufficiently large t, 
as operators from LP to Lq. 

(iii) (Definition of resolvent.) Let p E I(6'). For Re (hetQ) sufficiently negative, 
R(h)=(H- A)-l is a bounded operator from Lp to LP. 

(iv) (Resolvent convergence.) Suppose {V,) is a sequence as in (ii) and let 
p E I(0). For Re (he'O) sufficiently negative R,(X) =(H,- A)-l converges ro R(X) in 
the sense of norm convergence as operators on LP. 

(v) (Zero coupling limit.) Let p E I(0) and suppose that {P,) is a sequence in the 
cut plane converging to 0 such that Re (eieP,) 1 0 .  Define H, =Ho +P,H,(g). Then 
for all t 1 0  and Re (heiQ) sufficiently negative exp (-zH,) -+exp (-zHo) and 
(Hi- h ) - l -+  (Ho- A)-l in the sense of norm convergence as operators on LP. 

(vi) (Stability ofthe vacuum.) Suppose that 0 < / X I  < m where m is the bare mass. 
Then there is a B such that (H,+PH,-A)-' is bounded if 1/31 5 B. This bound is 
u~liform for /3 and h satisfying / X I  =p, 1/31 5 B, jarg PI 5 A where 0 < p <m and A < n. 
In fact, any h E res (Ho) is also in res (H,) for Ipl sufficiently small. 

http:(-71.12
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Properties (i)-(vi) follow from hypercontractive semigroup techniques as in 
[13]. (i) is a consequence of the Trotter Product Formula and the smoothing 
property (2.5) of exp (-zHo). (i) leads to (ii) by means of Duhamel's formula. The 
corresponding results (iii) and (iv) for the resolvent follow from taking Laplace 
transforms. (v) is a special case of (ii) and (iv), and (vi) follows from (v) by general 
stability theorems (cf. [4, p. 2061). We remark that the proof of (v) that we have 
sketched here is very different from that used to conclude the same result in the 
special case of $4. 

3. Higher order estimates. In this section we prove higher order estimates of 
the form 

Here N is the number operator, r 2 0 an integer, R,(A) =(Ho +PH,(g) -A) - l, and 
b > 0 a suitably large constant. Our results are incomplete inasmuch as we can 
prove (3.1) in the case of P($)only for larg PI <71./4, but in the special case of $4 

for /I in the cut plane with small. 
Define the domain 

D = {Y 1 Y = (YO,Y l ,. . .) E 9;Y, E Com(gn); 

Y, = 0 for sufficiently large n). 

D provides a domain of "nice" vectors on which the following operator calcula- 
tions are well defined. But in order to extend the resulting operator inequalities 
to domains larger than D we should like to know that D is a core for (N+ l)"(H- A); 
here a is real and A E res (H). We have been unable to prove this (although our 
original manuscript did contain a "proof" based on a misuse of Nelson's analytic 
vector theorem). Consequently the proofs of Theorem 3.1 and Lemma 3.4 below 
are only formally true. At the end of this section we indicate how to overcome this 
difficulty by introducing a momentum cutoff in H. 

THEOREM3.1. Assume that larg /I]<71.14, and let r 2 0 be an integer. Then for 
b >0 suflciently large, we have the estimates (3.1) and (3.2), 

Proof. Since the proof differs only slightly from that for the case of /3 > 0, we 
sketch the details (cf. [9, $41). The main steps are as follows: 

(i) The estimate (3.2) follows by induction from (3.1). Assuming that D is a core 
for (N+l)'(H+b), it is sufficient to take Y E D1=(H+b)D and to prove (3.1) in 
the form 

(3.3) II(N+ l)'+lR,(- b)Y 1 1  6 const. 1I(N+ 1)'Y 1 1 .  

(ii) Since ROY E D we can rewrite II(N+ l)rCIRoYll in terms of integrals in- 
volving products of annihilation operators. 
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(iii) The annihilation operators are "pulled through" the resolvent R, by means 
of the Pull Through Formula [9,Proposition 4.51. 

(iv) The resulting terms are estimated and are shown upon integration to be 
dominated by 11(N+ 1)'Y11. The basic estimate involved is of the form 

where Q is a polynomial in the field of degree less than that of the interaction P(4) .  
We indicate the proof of (3.4). Let P=x+ iy where 1 y I < x. When y =0, (3.4) 

follows at once from the inequalities 

and 

(3.6) IIRx(- b)1'2QRx(- b)li211 < ac, 

for sufficiently large b. Both (3.5) and (3.6) amount to restatements of the semi- 
boundedness of H o + ? a  for suitable & of P(4)  form and suitable real ?. 

When y#O, (3.4) remains valid since 

where B is a bounded operator. To prove (3.7) we note that 

xH, 5 Ho+xH,+b 

so that 

11 Rx(-  b)112yHIRx(- b)1'211 6 1 y j/x < 1 .  

Taking B=(l +R,(-b)112iyHIRx(-b)112)-1,we verify (3.7) by the expansion 

COROLLARY3.2. Assume that jarg Pj <5714 and let r 2 0 be an integer. Then for 
b > 0 suficiently large 

where 2n is the degree of the interaction P(4).  

REMARK.In the special case of P(4)=44it is possible to take n = 1 in (3.8)while 
in the general case this remains an open question. 

Proof. By a standard N-estimate (cf. [2]) 

provided n+PZn. It  follows from (3.2) that NrH1R;J+'is bounded; so is 
Nr(HO+/3HI)R;+l.Since HoNrR;J' =Nr(Ho +,13HI)R;JCr obtain+ -,l3NrH1R$+', we 
(3.8). 
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Here we have used the facts that NSconst. H,, and ( N +  l ) ' S ( N + l ) '  if i s j .  
Assuming that D' is a core for (N+ I ) ' ,  we obtain (3.17) from (3.20) by taking 
closures. 

We now turn to the proof of (3.18) on D x D. Set /3 =x +iy. Then 

(H*+1)(N+ 1)2'(H+ 1 )  = ( H ,+1)2(N+ [/312HIN2'HI 

+x(Hl(N+ 1)2'(Ho + 1 )  +( H ,+ l ) (N+ 1)2'Hl) 

+iy[(H,+ l ) (N+ HI]  

= IxI/IPI(Ho+l+sgn xlPIHI)(N+ 1)2r(Ho+ 1+sgn xl/3lHl) 

+ ( I  - IxI/IPI>((Ho+ 112(N+ 1/312H~(N+1)2'Hl) 

+iy[(H,+1)(N+ HI]  

2 ( 1  - [xI/IPI)(Ho+ 1l2(N+ 1)2'+iy[(Ho+ l ) (N+ HI]  

2 const. ( H ,+1)2(N+ 

for sufficiently small B. In the last step we have arranged that 1 yl is small and 
dominated the commutator by (3.10). 

COROLLARY3.5. Under the hypotheses of the lemma, there is a B such that 

ll(Ho+ l ) (N+ l)'Ro(~)'+lII < 

with the bound uniform in /3 which satisfy 1/31 j B  and E S  larg / 3 [  S T - - & ,  and h in 
bounded subsets of C. 

Proof. The corollary follows from the lemma by induction. 

Combining Theorem 3.1 and Corollary 3.5 we can thus state for the 44 theory: 


THEOREM3.6. Let h E res (H,), and suppose that E >0 and HI= : ~ 4 ~ ( g ) : ,  the 
integer r 2 0 are given. There is a positive constant B such that if [PI S B and larg / 3 [  
-I T-E ,  then h E res (H,), 

(3.22) II(N+ l)"lRo(h)'C1ll < co, 

and 

(3.23) 

where the bounds are uniform in /3. 

Proof. As noted in (vi) of $2, h E res (H,) for B sufficiently small. Once we verify 
(3.21), then (3.22) and (3.23) follow as in Theorem 3.1 and Corollary 3.2. In fact 
(cf. (3.1) and (3.17))we have already proved (3.21) except that for larg S E  we 
have restricted h to be a large negative real (assume E <~ 1 4 ) .  

It remains to extend (3.21) to any A E res (H,). To this end, we first show that, 
for 1/31 small, 

(3.24). ll(N+ l)'R,(A)(N+ 1 )  - ' I 1  < a. 
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If we regard $=D((N+ 1 ) ' ) ~  9as a Hilbert space with norm IIY 1 1 ,  = II(N+ 1)'Y 11, 
then (3.24) can be interpreted as the statement that R,(h) is bounded on $. We 
know that (3.24) is valid for A =  -b sufficiently negative and for /3=O since Ho 
commutes with N. Moreover R,(-b) +Ro(-b) in norm on @ as 1/31 -t 0; for 
we calculate that 

ll(N+ l)'[R,(-b)-Ro(-b)l(N+ 1)-'11 
(3.25) 	 = 1/31 1I(N+ l)'R,(-b)HlRo(-b)(N+ 1)-'11 

s IPI ll(N+ l)rR,(-b)(N+ l)-'+lIl. ll(N+ l)'-lHI(Ho+b)-l(N+ l)-'Il. 

By (3.1) and (3.9) we see that (3.25) is O(IP1). We conclude by the cited stability 
theorem [4, p. 2061 that X E res (H, 1 &) for 1/31 sufficiently small; that is, (3.24) 
holds. 

But 

According to this identity, (3.1) and (3.24) yield the desired conclusion. 
REMARKS.With a good deal more work involving the method of double com- 

mutators it is possible to prove (3.23) with the power R;+l. 
We have been unable to prove these higher order estimates for the general 

P(4) theory when larg 2 ~ 1 4 .Perhaps we should explain why neither the "pull 
through" method of Theorem 3.1 nor the commutator method of Lemma 3.4 
works in this case. In the first method, operator inequalities like (3.4) could be 
established even when P is in the cut plane and R, is not selfadjoint, provided that 
we could prove that operators of the form H,112(R$)112 were bounded. However 
there exist sectorial operators for which A1I2(A*)-lI2 is not bounded [5], [6], and 
we are unable to prove that H, with Im P f O  does not fall into this pathological 
class. The virtue of the commutator method or the double commutator method 
referred to above is that each commutator of N (or Ho) with HIreduces the "num- 
ber singularity" of HI by one. In the case of 44, HI has a number singularity of 
order only N 2  and thus a commutator can be dominated by the other terms that 
occur as in (3.10). This is no longer possible when deg P2 6. Experience with the 
nonrelativistic case [12] suggests one might be able to bound the commutator with 
the H,?term but no effective way of utilizing H,?has been found. 

We remark that the higher order estimates provide yet another proof of resolvent 
convergence as 1/31 -t 0 (at least in the region of validity in the /3 plane of the 
estimates). For 44, R,(- b) -Ro(- b) =0(1/31) by (3.25) with r =O. We can similarly 
show that, for +2n, R,(- b)n-l -Ro(- b y - l =  O([PI) for larg PI <~ / 4 .  

Finally, we settle the domain problem that arose in the previous proofs. Let 
HI,, be a momentum cutoff version of HI, obtained for instance by truncating the 
momentum integrals (3.11) occurring in HI to have domain of integration lkil 5 K. 
Define H,,, =Ho+/3H1,,. 
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We now specialize to the 44 model and extend (3.8) to ,B in the cut plane (with 
small). It is a curious fact that the proof of (3.8) is easier when Im ,B#O than 

when p>O. We first need a technical estimate similar to that used by Glimm and 
Jaffe in [I]. 

LEMMA3.3. Let HI = :44(g): and let r 2 0 be an integer. Then 

(3.10) 	 -+ i [(H, + l)(N+ I)', HI] 5 const. (H, + 1)2(N+ 1)'. 

REMARK.It is for convenience only that we assume HI has no terms of lower 
degree or that we do not take r to be any real number. 

Proof. A standard calculation (cf. [2]) shows that HI=2,4=,Wi where 

creates j and destroys (4-j) particles, and the kernel wi E L2(94). It is thus suffi- 
cient to prove that, for j=0,  . . ., 4, 

is bounded. We show that A, is bounded as a bilinear form on D x D and the 
desired operator extension follows by the Riesz Representation Theorem. More- 
over it is sufficient to prove that for @ E s",n D, and Y E FH4-jn D 

where a is independent of s. For then, for 0 , ~  E D, 

by Schwarz's Inequality. 
We further simplify the problem by writing Aj=B,+ C, and proving (3.12) 

separately for B, and Cj, where 

Bi= (N+ 1)-'I2[(N+ 1)') Wi](N+ l)-'12(Ho + 1)-I 
and 

Cj = (H, + 1)- l(N+ 1) - 'I2 [H,, W,](N+ 1)r12(Ho + 1)- l. 

With 0,Y as above we compute that 

(Q, BiY) = b,(@, (N+ 1) - Wi(Ho+ 1)- 'Y) 
where 

b, = ( s+ j+  l)l-rl"(s+j+ 1) ' - (~+5- j ) ' ] ( s+5- j ) - '~~ .  

But b, is bounded uniformly in s, and by an N-estimate, so is the operator 
(N+ 1)-I Wj(Ho+ l ) - l ;  hence, 

(3.13) I(@, BiY)I 5 bII@II IIYII 

where b is independent of s. 
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Similarly we calculate that 

(3.14) (@, CiY) = c,(@, (Ho + I ) - '  W(,(Ho+ 1 )  - 'Y)  


where c, =(s+j+ 1)-'I2(s +5 -j)"I2 and Wj'has the form (3.11) but with kernel 


(3.15) Il(Ho+I ) - '  Wj'(Ho+1)-l11 5 const. IIE(kl, . . .,k4)-112wi.(kl,. . ., k4)1IL2 

where E(k l ,  . . .,k4)=maxi+i. p(ki)p(ki,). We estimate that 

E(k l , . . . ,k4)-li2p(ki)6 const. p112(k1+ . . . +k4). 

Hence the norm in (3.15) is dominated by 

const. llp112(kl+ . . .+k4)wl(kl,. . ., k4)1 1 ~ 2  

which is finite provided that g(k)lklEE L2 for E>O (cf. [ S ,  Lemma 4.11). Since c, 
is bounded uniformly in s we see from (3.14) and (3.15) that 

(3.16) I(@, ciY)l5 cII@11 l l Y l l  
where c is independent of s. 

Combining (3.13) and (3.16) yields (3.12) and the lemma. 

We next mimic a technique of [12]when Im P f  0 :  


LEMMA3.4. Let HI = :44(g):,  and suppose that E >0 and the integer r >,0 are 
given. There is a constant B such that if IPI 5B, e 5 larg PI 5n- e ,  and h E res (H,), 
then 

(3.17) 1 1  (Ho+1)(N+ l)'R,(h)Y 1 1  S c 1 1  (N+ 1)'Y 1 1  

where the constant c is independent of P and of h for h in bounded subsets of C. 


Proof. It is sufficient to prove that on D x D 

(3.18) (Ho+ l)'(N+ 1)" 5 a2(H*+ l ) (N+ 1)2'(H+ 1 )  


where the constant a is independent of P in the cited region. For then if Y E D, 


by the triangle inequality. Setting @ =( H -  h)Y E D' =( H -  h)D, we obtain from 
(3.19) by induction 

-5 const. II(N+ I) '@ 1 1 .  
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LEMMA3.7. Assume that PZO. For real a and h E res (H,,,) D is a core for both 
(HK,,- and (N+ l)'(H,,,- A). 

Proof. We sketch the proof which is based on the methods of [9]. By the Pull 
Through method we establish the estimate 

where a, and b are positive constants with a, depending on K. Actually the domain 
problem arises again in the proof of (3.26); thus it is necessary to pass to a further 
cutoff hamiltonian HK,v,,[9, $21 which is known to be essentially selfadjoint along 
with its powers on a nice domain and for which (3.26) can be definitely established 
with constants independent of the cutoff V. Then (3.26) is obtained by limits and 
the Principle of Cutoff Independence [9]. 

By N-estimates it is easy to prove a sort of inverse to (3.26): 

(3.27) (HK,, + b)j 5 c,(Ho + 1)flj. 

Taken together (3.26) and (3.27) imply that 

D(H.gf,) c D(Hti) c D(H&,,) 

and accordingly that D(Hti) is a core for Hi , ,  since D(H;f,) is. It follows at once 
from (3.27) that Hi , ,  is essentially selfadjoint on D since H,"' is. 

That D is also a core for (N+ l)"(H,,,-A) is a consequence of (3.26) and the 
fact that D is a core for (H,,,- (cf. [9, Lemma 4.91). 

It remains to extend Lemma 3.7 to nonreal P in the region of interest, namely, 

{p 1 larg PI <7r/4) for P(+) and {p I larg PI <7r, B) for +4. Call this region R. 
For then we could prove the inequalities (3.3) and (3.17) for the cutoff theory, 
that is, with R,(X) replaced by R,,,(h) =(H,,, -A)- l but with constants independent 
of K. When K +-a,R,,, -t R, in norm by (iv) of $2 and [13, Lemma 111.161, and 
thus we recover (3.3) and (3.17) by the Principle of Cutoff Independence. 

To this end we note as in the proof of Lemma 3.7 that for P(+) we can also 
prove an estimate like (3.17), 

for /3 E Q, where now the constant c, depends on K but can be chosen independently 
of for /3 in compact subsets of R.It follows from (3.28) that 

where d, is independent of P in compact subsets of Q. Consequently, when 18PI 
< l/Il/d, we have 

where a <  1. That is, SP(N+ 1)'HI,, is a small perturbation (in the sense of Kato 
[4]) of (N+ l)'(HK,,+ b), and if (3.29) holds on a core C for (N+ l)'(HK,,+ b) then 
C is also a core for (N+ 1)'(HK,,+,,+b). 

http:D(H.gf,)


376 LON ROSEN AND BARRY SIMON [March 

It is now clear how to extend Lemma 3.7 by induction to any P E R. We reach 
p by a sequence of points /I,= I,81eisj, j= 0, 1, . . . , m, where 6, =0, 6,=arg P, and 
leioj+l-eisjl< lid,. By Lemma 3.7, D is a core for (N+ l)"(HK,,,+b) and so by 
(3.29) it is also a core for (N+ l)"(HK,,, + b). Repeating this procedure completes 
the proofs of this section. 

4. Asymptotic expansions. In this section we consider the asymptotic expansions 
of various stationary objects in terms of /3 in the cut plane. For P>O it is known 
[2] that H, = H, +PH,(g) has a unique ground state R,, normalized by I R, I = 1 
and (R,, R,) > 0. Let E, = (R,, H,R,) be the ground state energy and P, the pro- 
jection onto R,. We shall also be concerned with equal time vacuum expectation 
values of products of fields, 

where h, E L2(9),and +(h) = 1 +(x, O)h(x) dx is the time zero field. 
For a fuller discussion of the following material see [13, 9IV.31. There it is shown 

that, by virtue of property (a) in the introduction, the operators H, form an 
analytic family of operators for ,8 in the cut plane. Here "analytic" means that the 
resolvents R, are norm differentiable in P; in fact, the family H, forms a self- 
adjoint analytic family of type (B,) in the sense of T. Kato [4, Chapter VII]. It 
follows that R, and E, have an analytic continuation to a neighborhood of the 
positive real p-axis. Actually, we have analyticity in a larger region : 

THEOREM4.1. Let e > 0. Then there is a B > 0 such that E,, R,, and W, are analytic 
in {P I IargPI I r - 6 ,  IPI S B ) .  

Proof. The analyticity of E, and R, follows from the general theory of analytic 
families [4] and the norm resolvent convergence as + 0 of 92. As for W,, we see 
from 

that the analyticity of W, follows from that of R, and the strong continuity in /3 
of @,=+(hl). . .+(h,)R,. This latter fact can be seen either (incompletely) from 
higher order estimates, or from (iv)-(vi) of 92. For by (vi) the projection onto Q, 

is given for small 1131 by the integral 

with 0 < p < m. R, =P4R0/(R0, P,Ro)1/2. By (iv), P, is Lp norm continuous in P 
where p E I(n/2 -e) of (2.9). But the product 4(h1). . .+(hr) is a multiplication 
operator which is in all L4, q < OO. Hence @, is LP continuous. 

mailto:@,=+(hl)
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As in the above theorem we take ,B in the sector larg PI ST- E and p E I(n/2-E) 
where s > 0. Consider the expansion 

+(-P)N+lR,(h)[HI(Ho- A)-lIN+lY. 

According to general asymptotic theory (cf. [4, p. 439-4511), the expansion (4.3) 
is asymptotic in LP provided all the terms [(Ho -h)-lHI]n(Ho-A)-lY make sense 
and h is in 

By the results of 92 this is certainly the case when Y is in Lm(M) and Re (heio) is 
sufficiently negative for z = teis in the cone (2.11). 

By using the norm resolvent convergence (v) of 92 and the consequent stability 
of Eo, we obtain a somewhat stronger result: 

THEOREM4.2. Let s > 0 and suppose that larg PI 5r -s and p E I ( r /2-s). For 
some q >p, let Y E L4(M) and X E res (Ho r LP)n res (Ho r L4). Then for sujiciently 
small ]PI, X E res (H, r LP) and the series (4.3) for RB(X)Y is asymptotic in LP as 
/3+0. The series obtained for P,, Q,, E,, and W, by inserting (4.3) into (4.2) are all 
asymptotic as P +0. 

REMARKS.1. The asymptotic series obtained for E, and Q, are just the Rayleigh- 
Schrodinger series, and the series for EB can be expressed by a set of Feynman 
diagrams. 

2. In particular we can take Y E D which is contained in L4(M) for all q < co 
[13, Theorem 111.91. For p = 2  we can also choose Y E C m ( N ) .  

Proof. The fact that h E res (H, 1 Lp) for sufficiently small /3 follows from stan- 
dard theory (cf. [4, p. 2061) and the norm resolvent convergence (v) of 92. To prove 
that the remainder term in (4.3) is Lp-bounded we note that, by interpolation, 
(Ho-A)-l is a bounded operator on Lr for r E [p, q]. Moreover, since HIE Lqor  all 
s < co we see by Holder's inequality that HI maps L' into Lr-6 for any 6 > 0. Hence 
[(Ho- h)-lH,]n(Ho -A)-'Y E Lp for all n. The rest of the theorem is immediate. 

We have been unable to apply our methods satisfactorily to time-dependent 
quantities such as the fields 

(4.4) +,(h, t) = exp (itH,)+(h) exp (- itH,). 


The difficulty is that the operator exp (-zH,) is well defined for z in the cone 

(2.11) which does not include z =  _+it when P is nonreal. In fact, as arg /3 +r ,  
exp (-zH,) is defined only for z =  -it +0, and, as arg ,6 -t -T, for z=  it +0, 
where t >O. Accordingly, we see that our methods could be applied to objects of 
the form 

(4.5) TB= (Q,-, +(h1) exp (iHB(tl + iel))+(h2) exp (iH,(t2 + is,)). . .+(h,)R,) 
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where E , ,  . . ., E, > O  and t,, . . . ,t, 0 depending on whether arg /3$ 0. T, can be 
regarded as a time-ordered VEV continued to the forward tube. However, at the 
present stage of the real /3 theory, only the time-ordered VEV's with r 5 4  are 
known to exist as tempered distributions [9]. 

5. Borel summability. In this final section, we prove that for the (c$~),theory 
the functions W, introduced by (4.1) can be recovered from their perturbation 
series by the method of Borel summability. Specifically, let h,, . . ., h, in L2(i2) 
be given along with E >0. Let W, have z,"=,anjP as asymptotic series. Then there 
exist a B >0 and a >0 such that 

(i) g(z) = (a,/n !)zn converges if Izl <a and has an analytic continuation I,"=, 
to the sector larg zl <v/2; 

(ii) if larg <.ir/2-E, 1/31 <B,  then J," g(x/3)e-" dx exists; 
(iii) W,=J," g(xp)e-" dx. 
The Borel summability (i)-(iii) of W, complements that of the ground state 

energy, ED, proven in [ I l l .  It brings us one step closer to the scattering matrix 
which is expressed in terms of time-ordered unequal time vacuum expectation 
values. 

By Watson's Theorem [3], to prove (i)-(iii) above, it is sufficient to prove that 
the remainder Irn(j3)I 5 Aunn! 1/31" for all /3 with 1/31 <B, larg PI <.ir-e where A and 
B are (&-dependent) constants and rn(/3) = W, -z",i ampm. As usual we treat the 
remainders of the numerator and denominator of 

separately. Since the denominator has already been discussed in [11], we need 
only deal with the numerator. Finally, by (4.2), it is enough to bound the re- 
mainder of 

uniformly in A, A' with I A1 = I A'I =p. 

By using (4.3), one finds the remainder term for (5.1) is given by Fn(/3) 
=(-P)" z;=ock where 

Since Aan(n+ I)! 5A(2o)"n!, it is enough to obtain a bound of the form Aann! on 
each c,. By (3.21), in the sector of interest in /3, (N+ l)T,(A)(N+ I)-"l is bounded 
uniformly in A. Taking s= [(r+ 1)/2] we see that 

The first three terms on the right side of (5.2) are independent of n and are bounded 
uniformly in A, A' and /3 with 1/31 small, larg /3I <n-e. As in [ll] ,  the next terms are 
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bounded by A U " - ~ ( ~-k ) !  and Auk(k+s) !  where A and a are independent of 
A, A', n and k .  Since 

we see the right-hand side of (5.2) is bounded by C(2u)"n!where C is independent 
of A, A' and ,B satisfying the required conditions. This completes the proof of the 
bound on the remainder term for W,. We have thus proved 

THEOREM5.1. Let HI = :+4(g):.For h,, . . . ,h, E L2(9)let 

where Q, is for P >0 the vacuum vector for Ho +PHI normalized by Q, 1 1  =1, 
(Q,, Q,) >0. Then the asymptotic series for W ,  is Bore1 summable to WD. 
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