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Abstract connections between integral kernels of positivity preserving semigroups 
and suitable Lp contractivity properties are established. Then these questions are 
studied for the semigroups generated by -A + V and H,, the Dirichlet Laplacian 
for an open, connected region Q. As an application under a suitable hypothesis, 
Sobolev estimates are proved valid up to 352, of the form /n(x)1 ,< coo(x) lJHk,nllZ, 
where o0 is the unique positive L2 eigenfunction of H, . 0 1984 Academic Press, Inc. 

1. INTR~DIJCTI~N 

Since the discovery of Lp properties of the Hermite semigroup by 
Nelson [23 ], and especially since the discovery of the connection with 
“logarithmic Sobolev inequalities” by Gross [18], the general area of hyper- 
contractive semigroups has been extensively studied (see the bibliography of 
Gross [19]). There are several important themes which have not been 
explored which we feel are analytically significant. It is surprising these 
themes have not been studied, and we are even surprised that neither of the 
present authors, each of whom has a long interest in the subject, has 
previously examined them. 

To describe these themes, we briefly recall several definitions which we 
will make formally later on. Consider a semigroup, e ~ ~4, on L ’ (X, dx) where 
dx is a Baire measure on a locally compact Hausdorff space, X. We suppose 
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336 DAVIES AND SIMON 

that eefA extends continuously as a map from L * n Lp to L* to a 
contraction semigroup on each Lp (1 < p < co). ePfA is called hypercon- 
u-active [39] (resp. supercontractive [30]) if ePfA maps L* to L4 for some 
t > 0 (resp. all t > 0). (2 and 4 play no special role; once one has L* to L4 
information, one automatically obtains Lp to Lq information for any 
l<p<q<m.) 

Now suppose that ePtH is a positivity preserving selfadjoint semigroup on 
L*(X, dx). Suppose that Hq,, = eyl, for a positive function q,, in L*(X, dx). o0 
is automatically the ground state, i.e., e = inf spec(H). Define the probability 
measure &(x) = pO(x)* dx and the unitary map MVO : L “(X, dp) + L ‘(X, dx) 

by W+f = fvo. 
Then A = M&‘(‘(H - e) Moo on L’(X, &) generates a contractive 

semigroup, eelA, on each Lp(X, dp) ( see, e.g., [27, TheoremX.551). One is 
often interested in hypercontractive properties of ePAf which we dub 
“intrinsic hypercontractive” properties of ePfH. Thus Nelson’s result [23] is 
that H = -A + x2 on L*(R”, d”x) generates an intrinsically hypercontractive 
semigroup. 

Our main themes here are the following: 

(a) L”-properties. We will examine when emfA maps L* to L” for 
all t > 0, a property we call “ultracontractivity,” following a suggestion of D. 
Robinson. We are especially interested in intrinsic ultracontractivity for 
Schrodinger semigroups, e-IH, with H = -A + I’. Carmona [ 5 ] (following, in 
part, ideas of Herbst and Gross), showed that if such a semigroup is intrin- 
sically hypercontractive, then H > cx* - d (some c > 0) so in an average 
sense V must grow as fast as x2. Rosen [30] proved intrinsic supercontrac- 
tivity for a class of V including V(x) = lxla for any a > 2. There is no 
literature on intrinsic ultracontractivity of Schrodinger semigroups on R” in 
part because there is a folk belief that this never occurs. We were quite 
suprised to realize that, despite this folk belief, which we shared, ultracon- 
tractivity is quite common. We will prove (see Section 6) that for 
H = -A + lxla ln(lxJ + 2)4, one has no intrinsic hypercontractivity if a < 2, 
intrinsic hypercontractivity but not intrinsic supercontractivity if a = 2, 
/3 = 0, intrinsic supercontractivity but not intrinsic ultracontractivity if a = 2, 
0 < /3 < 2 and intrinsic ultracontractivity if a = 2, /3 > 2, or if a > 2 (the 
a < 2 result is due to Carmona 151, and the a = 2, /3 = 0 result to 
Nelson [ 241). Intrinsic ultracontractivity is especially interesting since it 
implies that qnq;’ is bounded for any L* eigenfunction (D,, and so these 
results are a contribution to the large literature on decay of eigenfunctions 
(see Sect. C3 of [37] f or references). We note that intrinsic ultracontractivity 
for a very large class of one-dimensional Schrodinger operators on a 
bounded interval was proven by one of us [9] prior to this work. 

(b) Intrinsic contractivity of Dirichlet semigroups. There appears to 
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be no previous literature on the intrinsic contractivity properties of e-IH for 
H, the Dirichlet Laplacian of a region R except for the one dimensional 
results in [9]. (Hooten [22] discusses contractivity properties for LP(Q, d”x) 
rather than L”(R, pi d”x)). In Section 9, we describe a bounded open region 
Q in R* for which the associated Dirichlet semigroup is not intrinsically 
ultracontractive. We will also prove that under fairly weak geometric 
hypotheses on R (interior and exterior cone conditions), Dirichlet 
semigroups are intrinsically ultracontractive. 

(c) Sobolev estimates up to the boundary. This involves another 
natural question, at first sight not related to Lp contractivity, which 
surprisingly has not been studied. Let H, be the Dirichlet Laplacian of a 
bounded open region R in R”. Sobolev estimates imply that 

/l’i/l/&cllH:,vll, (1.1) 

so long as k > v/4, and under a very weak condition (see Appendix C), one 
knows that any w E D(Hk,) (k > v/4) is a continuous function vanishing on 
afin. The natural question to ask is how fast must such a v vanish? Even if 
v = 1, R = [0, 11, th e rate will depend on k if k is very close to i, so it is 
natural to restrict oneself to the situation for k sufficiently large. It is not 
hard to see (see Sect. 9) and is well known that if aa is smooth, then any 
w E D(Hk,) (k > v/4 + 1) vanishes at least linearly as one approaches 352. 
For 0 with aB nonsmooth, the precise boundary behavior can be quite 
complicated, but it is natural to expect that no function in D(Hk,), k large 
should go to zero more slowly that (D,, the ground state of H, . That is, we 
ask if there is sufficiently large k so that a Sobolev estimate up to the 
boundary holds: 

The point is that (1.2) is intimately related to intrinsic ultracontractivity! For 
letting q= M&‘v = v/o0 and A = M;b(H - e) Moo, Eq. (1.2) is equivalent 

to I rl(x)l G c II@ + l)kvII~qn,a,~ which, in turn, is equivalent to asking if 
(A + l)-” maps L ‘(J?, dp) to L”O(f2, dp). Such an estimate will hold if and 
only if ]]e-‘Av]]oo < Ct-’ l(ql12 f or some 1 and all 0 < t < 1. Thus (1.2) is 
equivalent to intrinsic ultracontractivity together with suitable information 
on the rate of divergence of ]]ewfA l]a,2 (]]B]]p,4 is the norm of B as a map 
from L4 to Lp). In Section 9, we prove estimates like (1.2) when 0 obeys an 
interior and an exterior cone condition; k depends on the geometry of the 
interior cone. 

(d) Behavior of the heat kernel. Suppose that a positivity preserving 
semigroup e-‘” on L*(X, dx) has a continuous integral kernel a,(x, y) and H 
has a ground state v,Jx). Typically, a, and o,, vanish as x (or x, y) go “to 
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inifinity.” Let b,(x) = dm. A n optimist might hope that a,(~, y), 
b,(x) b,(y), and cpO(x) cpO(y) all vanish at the same rate in the sense that the 
ratio of any two is bounded. Under some additional hypotheses (normally 
true for Dirichlet and Schrodinger semigroups), we will show that the 
comparability of these three quantities is equivalent to intrinsic ultracontrac- 
tivity of e-‘“. We will prove that partial comparability results often imply 
ultracontractivity and thus full comparability, for example, an upper bound 
a,(~, Y) < q~,,(x) V&Y) implies a lower bound @A,(X) CP&JJ> < q(x, Y>! 

This paper has become long because of this variety of themes. In addition, 
we felt it necessary to repeat some of the arguments of Gross [ 181, 
Eckmann [ 141, Rosen [30], and Carmona [5], in part because they often do 
not make constants explicit (and in going to La, explicit constants are 
crucial), and in part because we wish to use recent methods [37] to discuss 
domain questions. 

In Sections 2 and 3 we establish the connection between ultracontractivity 
and behaviour of the heat kernel in an abstract setting. In Sections 4 and 5 
we extend ideas of Gross [ 181 and Rosen [30] to reduce the proof of 
intrinsic ultracontractivity to an estimate of the form 

-In o0 < 6H + g(S) (1.3) 

with some restrictions on how fast g(6) can grow as 6 1 0 (a bound 
g(6) < Cd-’ for some I is certainly sufficient). In Section 6, we examine 
when (1.3) holds for Schrodinger operators. In Section 7, we obtain upper 
bounds on -In o,, for the Dirichlet Laplacian by geometric functions and in 
Section 8, we recall estimates of Davies [ 111 obtaining upper bounds on 
similar geometric quantities by H. By combining these in Section 9, we prove 
Sobolev estimates up to the boundary for a wide class of regions. 

Appendices A-C contain various technical results that complement issues 
discussed in the text. While these appendices illuminate our main thread, 
they are not required in the main body of the paper. 

A sketch of some of our arguments in pedagogical presentation can be 
found in [13]. 

2. AN ABSTRACT FRAMEWORK 

Although hypercontractivity was historically first studied for the harmonic 
oscillator in quantum field theory, and later for Schrddinger operators on 
L*(IR”‘), the ideas are applicable to a variety of other situations. In order to 
describe all these applications in a unified manner, we treat the subject at an 
abstract level. For the same of the reader who wishes to proceed to Section 3 
at once, we comment that all the hypotheses and results in this section apart 
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from (2.1) are automatically satisfied for uniformly elliptic second-order 
operators on manifolds and for a large class of Schrodinger operators on 
LZ(lF?“‘). See [ 15, 371 and references there. 

Let X be a locally compact second countable Hausdorff space, and let dx 
be a regular Bore1 measure on X with support equal to X, i.e., the measure of 
every nonempty open set is strictly positive. Let H be a nonnegative selfad- 
joint operator on L’(X) such that for every t > 0, e-H1 has a jointly 
continuous integral kernel a,(~, v). Thus 

e ?f(x> = [ a,(~, Y> f(y) dy 
x 

for all f E L*(X) and t > 0. Let us also assume that a,(~, JJ) > 0 for all 
x, y E X and t > 0, or equivalently that e-H’ . 1s positivity preserving. Finally, 
let us suppose that 

Tr[e-H’] < co (2.1) 

for all t > 0, or equivalently by Mercer’s theorem (see [28, p. 65]), 

.I a,(x, x) dx < co 
X 

for all t > 0. Since out entire theory is based upon this last hypothesis, it is 
clear that we are not studying hypercontractivity in its most general setting. 
However, we investigate the status of this hypothesis in Appendix A and 
show that it is a consequence of hypercontractivity for all Schrodinger 
operators; see Theorem A.8. However, (2.1) rules out most quantum field 
theory situations. 

Under these conditions H has purely discrete spectrum with eigenvalues 
{EnI?= which we write in increasing order and repeat according to 
multiplicity. Let {P,},“=~ be the corresponding eigenfunctions, normalized by 
Ila)nll* = 1. 

LEMMA 2.1. The function (P,, is continuous for each n > 0, and we have 

for each t > 0, where the series is locally uniformly convergent on XX X. If 
we define 6,:X-+ R+ for each t > 0 by 

b,(x) = a,(~, x)“’ (2.3) 
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then b, is a continuous function in L’(X) and 

Iv&>l G e(‘%fbf(X) 

for all n, x and all t > 0. 

Proof Because a, is a kernel of positive type we have 

and 

Also 

0 < a,@, v> < b,(x) b,(y) 

lib,J:=j a,(x,x)dx=tr[ePH’] < co. 
x 

(2.4) 

(2.5) 

a,@, Y> v,(u) dv 
X 

< eEnf 
I b,(x) b,(y) I ~,(v>l do 
X 

< eEn’b,(x) II b,lL. (2.6) 

The continuity of rp, is obtained by applying the dominated convergence 
theorem of the formula 

v,(x) = eEnf j a,(x, Y) (O&J> dye 
X 

Now the expansion (2.2) is certainly valid in the L*(X X X) norm so the 
proof of (2.2) can be completed by showing that the rhs is locally uniformly 
convergent. If KG X is compact and 

ct = sup b,,,(x) II br,j II2 
XEK 

then 

for all x E K by (2.6), so 



ULTRACONTRACTIVITY 341 

for all x, y E K and the uniform convergence of the series on K x K is a 
consequence of the Weierstrass M-test. Putting x = y in (2.2) we see that 

eeEnf Iq,,(x)l* < $ eeEm’ Irp,(x)l’ 
m=O 

= a,(x, x) = b,(x)2 

which proves (2.4). 1 

In many situations b,(x) + 0 at “infinity” in X in which case our proof 
shows that the convergence in (2.2) is uniform and not just locally uniform. 

COROLLARY 2.2. For each x E X, b,(x) is an analytic, logarithmically 
convex, monotonically decreasing function oft. 

Proof. These facts are all simple consequences of the formula 

b,(x)* = f’ eeEnt lrp,(x)l’. I 
i?=O 

We now make the assumption that the contraction semigroup epH1 is 
irreducible in the sense that if, for some Bore1 set A c X 
{f E L*(X, d,) If = 0 on X\A} is left invariant by epHf, then up to null sets, 
A is $ or X. It is then a standard fact [29, p. 202, 8, p. 1741 that E, has 
multiplicity one, and that rpo(x) is strictly positive except on a (closed) null 
set. By removing this set from X we can assume that 

rpo(x> > 0 all x E X. (2.7) 

Following [32] we can now deduce that epH’ is positivity improving in a 
rather strong sense. 

LEMMA 2.3. If t > 0, then 

a,(-5 Y> > 0 all x, y E X. 

ProoJ The core of our proof is the assertion that if a,(~, y) > 0, then 
a,+,(~, y) > 0 for all s > 0. To prove this, note that 

a,(~, v> > emEOSvo( y)” > 0, 
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so if a,(~, y) > 0 and z lies in a small enough neighborhood N of y, then 
a,(~, z) > 0 and aJz, y) > 0 by continuity. Therefore 

a,+,(~, Y> =i, 4~ z> a,(~, Y) dz 

> 1 a,(~, z> a,(~, Y> dz 
N 

> 0. 

We combine the above observation with the fact that a,(~, y) is an 
analytic function of t to conclude that either a,(~, y) > 0 for all 0 < t < co or 
a,(~, y) = 0 for all 0 < t < co. It remains to eliminate the second possibility. 

If we put 

f,(z) = a Y> 

then f, E L’(X) by (2.5). Moreover 

.A+ s(z) = j u,(z, ~1 a,(~ y> dw 

=e -““f,(z) 

and 

(A 3 (~0) = ?:, 6 Y> cp&> dz 

where N is chosen to be a small neighborhood of y within which a,(~, y) is 
nonzero. Similar considerations apply to the function 

g,(z) = a,@, z)* 

Now 

lim u 2cl+sj(x, y) ezEG = lim a,+,(~, z) a,+&, y> eZEd dz s+* 1 s-m x 

= lim (ePHSg,, eP”“f,) e2Eos 
s+m 

= (S,~(oO>(%~fi) 
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by the spectral theorem. We showed that this last quantity is nonzero, so 
a,(~, y) cannot be identically zero as a function of t. I 

3. ULTRACONTRACTIVITY, HYPERCONTRACTIVITY, 
AND THE HEAT KERNEL 

We now investigate hypercontractivity of the semigroup e-H1 under all the 
assumptions of the last section. We emphasize that since we assume (2.1) we 
are not treating the fully general cases. However, in all the applications to 
Schrodinger operators and elliptic operators on manifolds, (2.1) is rather 
easy to verify, and for such operators (2.1) is actually a consequence of 
hypercontractivity by Theorem A.8. 

For historical reasons, we assume that ePHf is a contraction semigroup on 
Lp(X) for all 1 < p < co, but will not use this condition in the next theorem. 
We then recall that eeHt is said to be hypercontractive if, for all 2 < p < co 
there exists T, < co such that t > T, implies eeHt is bounded from L2(X) to 
Lp(X), and that e-Ht is said to be supercontractive if Tp = 0 for all 
2 < p < co. We now introduce the even more restrictive condition of 
ultracontractivity as corresponding to the requirement that eeHf is bounded 
from L’(X) to L”-‘(X) for all t > 0. Apart from [9, lo], it appears that this 
concept has not been investigated before, and we shall see that for 
Schrodinger operators it is usually true whenever hypercontractivity is true, 
with the exception of certain borderline cases such as the harmonic 
oscillator. Our first theorem introduces a variety of conditions equivalent to 
supercontractivity. 

THEOREM 3.1 Suppose 2 < p < 03. Then the following are equivalent. 

(i) For all t > 0 there exists c, < co such that 

all n. 

(ii) ]]bJ], < co for all t > 0. 

(iii) IIu,I~~,~ E {J{J la,(x, y)12 d~}~” dx}‘lp isfinite for all t > 0. 

(iv) eeH1 is bounded from L’(X) to Lp(X) for all t > 0. 

Proof (i) * (ii) 

IlkIt; = lIb:ll;:: 

I 

co 

< C epEn’ 

n=o lllv.l’ll,,2(n/2 
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(ii) * (iii) 0 < a,(x, y) < b,(x) b,(y) so 

llatllp,2 G /l~,ll, llbtllz 

= ~]b,]lp(tr[e-Hf])“2 

< co. 

(iii) > (iv) if g,(x) = {J‘ ]a,(~, y)(’ u”) ‘I2 then 

lem)l= ~~xGw-wY~ 

G &@I llfllz 

for all f E L2(X). Therefore 

lie ?I, ,< II g, lip llfll2 

= l1~,11,,2 Ilfll,. 

(iv) > (i) since p,, = eEn’ePH’yl, we see that 

II vn lip = eEnf Il~~~“‘~,,I/, <e”n” Ile-H’llp,2. I 

Notes. (1) It is clear from the proofs that one can obtain precise quan- 
titative connections between the constants involved in the different parts of 
the above theorem, provided one has effective bounds on tr[ eeH1]; these can 
often be obtained by a use of the Golden-Thompson inequality. 

(2) Although we have chosen, for simplicity, to write down the 
conditions for all t > 0, each step involves only one value of t, and the 
complete circle of implications only need involve losing a factor of (2 + E) 
on t. 

We now introduce intrinsic versions of the notions of hyper-, super-, and 
ultracontractivity. If we define the probability measure P on X by 

44x)= R,(x)~ dx 
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then there is a unitary map 

u:L*(x,dp)+L*(x,dx) 

defined by 

u-(x) = co&m) 

and this enables us to lift all the ideas to L’(X, &). In an obvious notation 
we then get 

E7= u-‘(H-EJU, 

&t(x) = %(X)/%(X>~ 

a-& Y) = a,@, Y) 
PO(X) %(Y> ’ 

b;(x) = bf(XYrp,(X)~ 
It then follows [27, p. 2551 that e- lr7 is a contraction on all Lp spaces. 

The point of this change of measure is that it leads to the normalization 
$, = 1. We then say that H is intrinsically hyper-, super-, or ultracontractive 
if fi is, respectively, hyper-, super-, or ultracontractive in the sense 
previously discussed. The following theorem provides various equivalent 
criteria for intrinsic ultracontractivity. 

THEOREM 3.2. We have the implications 

(i) * (ii) cr (iii) 0 (iv) u (v) * (vi) 

between the following conditions (the constants c,--c5 are t-dependent). 

(i) There exists M such thatf E Dom(H”‘) implies 

If( G C%(X) IIW + l)“fll* all x EX. 

(ii) For all t > 0 there exists c, such that 

ICtW G cl llfllz ~~(4 all xEX 

for all f E L*(X, dx). 

(iii) For all t > 0 there exists c2 such that 

b,(x) G c~(D&) all xEX. 

(iv) For all t > 0 there exists c3 such that 

a,@, Y> G c3 %(X> %(Y> all x, y EX. 
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(v) For all t > 0 there exists c, such that 

ax, Y> > C4W) b,(Y) all x, y E X. 

(vi) For all t > 0 there exists c, such that 

a,(x, Y> > Cs%(X) %(Y) all x, y E X. 

ProoJ: (i) + (ii) If g = eeHff then 

so 

I g(x)l G crp&> IIW + 1)” emHf II llfllz. 

(ii)o (iii) We note that (ii) requires e-‘( to be bounded from L2(X, &) 
to L”O(X, d,~) for all t > 0, while (iii) requires b; to be bounded. We may 
therefore apply Theorem 3.1 to g with p = co. 

(iii) o (iv) This follows from (2.5). 
(iv) * (v) Let the compact subset K of X be large enough so that 

I 

-Eof 

K 

q~(x) dx >, 1 - + 
3 

Then 

e -Eof~o(4 =I a,(--~ Y> V,(Y) dy 
X 

< I,, ~3 R,(X) R,(Y)’ dv + I, at@, Y) CPO(Y) 4 

SO 

< WE%&) + j a,(x, Y) R,(Y) dy 
K 

I a,(~, Y> R,(Y) du > ie-“%&> 
K 

for all x E X. Now 

(3.1) 

yzmin ! 
a,@, w> 

%(Z) %(W) 
:z,wEK 

1 
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is strictly positive by Lemma 2.3, and for any x, y E X we have 

>Y II a,(~, z> vlo(z) rpo(w> a,(~, Y> dz dw 
KK 

> $v,e-2Ed~o(x) Pi 

The argument is completed by using (iii). 

(v) * (iii) 

by (3.1). 

rpo(4 = For J a,(-~ u> voW 4 
X 

> eEof J c4W) b,(.d cpob9 dv 
> c4eEo’%(x) jx rpo(y>’ dy 
= c4eEo”‘bl(x) by (2.4). 

(v) * (vi) This follows easily from (2.4). fl 

Notes. (1) Every step of this proof is under explicit quantitative control 
except (iv) =s- (v). For the strict positivity of y is proved by compactness 
arguments combined with the indirect methods of Lemma 2.3. 

(2) Condition (iv) is equivalent to the boundedness of the mtegral 
kernel a;(x, y) which is in turn equivalent to the boundedness of eAH1 as an 
operator from L’(X, dp) to L”O(X, dp). It is in fact easy to see that emH1 is 
bounded from Lp(X, dp) to Lq(X, dp) for all p, q under the above conditions. 

The following theorem gives some support to our claim that hypercon- 
tractive semigroups are usually also ultracontractive, except in critical cases. 
This theorem does not utilize the trace hypothesis (2.1). 

THEOREM 3.3. Suppose that eeHf is a contradiction on Lp(X) for all 
1,<~~coundO~t(~.Ife-~“’ is bounded from L ’ to L 4 for some c > 0 
and some 0 < a < 1, then e- Ht is ultrucontructive. 

Proof. We have 

where 
g(t) = sup (CP -St) 

O<S<oO 

= Clt-al(l-d 
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It follows by interpolation that 

Ile-“‘II 2n+2,2n+l < eg”“2” 

for all integers n > 0. Putting 

t, = 6tz-‘(n + l)-’ 

we see that CFzO t, = t SO that 

Ile-R’llm,2< fi lle-Hf42n+~,2n+I 
n=O 

<exp f g(t,)2-” 
t n-0 1 

=exp F $ +n*(n+ I)’ 
i c 

n l-a 
n=O 1 1 

Our next theorem proves the invariance of intrinsic ultracontractivity 
under bounded multiplicative perturbations. Simple perturbations of the 
harmonic oscillator Hamiltonian show that the second conclusion of the 
theorem is not valid under the condition of intrinsic hypercontractivity. It is 
not clear whether intrinsic hypercontractivity is preserved under bounded 
perturbations. 

THEOREM 3.4. If H is intrinsically ultracontractive and V is a bounded 
potential, then H’ = H + V is also intrinsically ultracontractive. Moreover, 

c-‘cooaP~~c~o~ (3.2) 

where l<c<co. 

Proof If 11 VII, = y, then it follows from the Trotter product formula that 

ep y’aI(x, y) < al(x, y) < eYtat(x, Y). 

Also 

4(x, Y> < eyf a,(x, Y) vlo(4 vlo(y) 

CPA(x) rpA(Y) vo(x) PO(Y) -m x3’ 

so the intrinsic ultracontractivity of H’ will be established if 

fPo(x) G WA(X) all x E X. 
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By Theorem 3.2(vi) we have 

349 

f&(x) = &I, 4(X, Y) 4%(Y) dY 

> eE;r - Yt 
I 

4x, Y> rph(Y) dY 
X 

> A- ytcj I %(X> (00(Y) MY) dY 
X 

= %(X>~ 

where the strict positivity of both p,, and cot, imply that c > 0. The reverse 
bound in (3.2) then follows by symmetry. 1 

4. LOGARITHMIC SOBOLEV INEQUALITIES 
AND ULTRACONTRACTIVITY 

Gross [ 181 discovered an effective technique for checking when e-tA maps 
Lp into Lg. We want to describe his method in this section. We even provide 
proofs for several reasons: (a) we want to discuss domain questions for 
Schrddinger operators using some recent technology [37]; (b) for our 
purposes it is more useful to integrate in p than t as Gross does (although the 
results are equivalent); (c) we want to describe how q = 00 is allowed; 
(d) since Carmona [5] and Eckmann [ 141 misquote Gross’ result (see 
below), we feel it is important to carefully state the estimates. 

DEFINITION. Let A be a nonnegative selfadjoint operator on L2(X, dp) 
with ,u a probability measure. We say that e-‘A is a positivity preserving Lp 
contractive semigroup (PLC) if and only if (i) eefAf > 0 if f > 0; 
(ii) ]]e-‘“f]], < ]]f]], for allf E L* n Lp and all p E [ 1, co]. 

Automatically, e IA is strongly continuous on each Lp, p # co and 
holomorphic in the sector (Arg t/ < (7r/2)(1 - /2/p - 1 ]) (by an application 
of the Stein interpolation theorem); see (27, p. 2551. (The condition 
e -fA 1 = 1 is not used in the proof of Theorem X.55(c).) Neither hypothesis 
above is absolutely essential to the result below, but the two conditions make 
the domain considerations especially simple and they hold in our examples 
of interest. 

LEMMA 4.1. Let e-” be a PLC, and define B = lJ,v>o e-““[L”] and 
c$+ = iJ,,, eeWA [La] + . Then 
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(a) emsA maps ~3 to 9 and &J+ to %+, 

(b) G8 is contained in D,(A), the LP-domain of the generator of emfA 
for all p E (1, oo), 

(c) GS is dense in each Lp, p # CO and is a core for A on Lp, p # 03, 

(d) g+ is dense in LP,. 

ProoJ (a) is immediate since eeSA commutes with epwA and maps Lx 
(resp. L y) to itself. 

(b) emsA [e-““91 is Lp holomorphic for ]s1 small by the remark above, 
so ecWAp E D(A,). 

(c) Density is proven in Theorem X.55(b) of [27], and the core 
statement then follows from (a), (b), and Theorem X.49 of [27]. 

(d) Ly is dense in LP, and iff is in Ly, emwAf + f in Lp as w 1 0. 1 

Forf >O, we definefp=fP+‘. Gross’ basic theorem can be restated as 

THEOREM 4.2. Let eprA be a PLC. Let r E (2, co ] and suppose there are 
continuous functions c(p) and T(p) on (2, r) so that for f E G+ , 

J ^ f p lnf < c(pMf, f,) + T(P) Ilf iI; + llf II: In llfll,. (4.1) 

Suppose that 

t= - 
i 

r C(P) dp 
2P ’ 

M = J”; L-(p) $ 

are both jinite. Then e- fA maps L2 to L’ and 

lle-lAf IL < e” llf lIza (4.3) 

Remarks. (1) ePsAf is smooth in s on any Lp, so Af can be interpreted 
as the Lp derivative which lies in all Lp(p < co) and in particular in L2; 
f,=.“O CL= so (&if,> is intended as the L2 inner product. Af can be inter- 
preted as the Lp derivative or as the L2 derivative. 

(2) Gross I181 writes c(p)((Af, f,> + Y(P) Ilf II;> and ~4 = si Y(P(s)) ds, 
where dp(s)/ds =p/c(p) which is equivalent to our (4.3). When 
Eckmann [14] and Carmona [5] quote Gross’ results, they incorrectly use 
M = s: HP(~)) d s even though their y is equal to our r rather than Gross’ y. 

Proof Suppose first that f E Q+ . Then emsAf E L”O and Lp holomorphic 
in s. Define p(s) by 

dp(s) p(s) 
--z-=---; c(p(s)) 

P(O) = 2, (4.4a) 
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for s E [0, t), so lim,,, p(s) = r by (4.2) and each such p(s) < co. Let 

(4.4b) 

and 

G(s) zz e-“‘cs) II e-sAfllp(s) = e-‘w’s’ Ilf(~)lIp~s~. 

Then G is C’ since p(s), M(s) are C’ and eesAf is Lq holomorphic in s for 
all q E [2, co). Since G(0) = ]]f]]2, (4.3) will hold for all f E &@+ if we show 
that dG(s)/ds < 0. This is becausef E L’ if and only if supq< r i]fl], < co and 
this sup is the L’norm. But a straightforward calculuation (domain 
considerations are no problem by the holomorphy) shows that 

$ In G(s) = [C(P) Ilf(~N~~~jl~’ ~--T(P) llf(~)llPI~~ 

+ C IfW’“’ In f@> 444 

- c(p(s>>(Af(s>,c,,f(s),,,,) - Ilfmls; ‘n llf(~)IIpw I 

is nonpositive by (4.1) andf(s) E 6!9+. 
We have thus proven (4.3) forf E g+ . By Lemma 4.1(d), the result holds 

for f E L: and so for all f since ]e-“Af] < esA If] pointwise. I 

Henceforth, we restrict ourselves to a special class of A’s. Let H be either 
(i) -A + V on L2(R “) for some V with V- E K,, V, E Kfc [37] so that 
Z!?q = ELI has an L* solution w,, with E = inf spec(H); or (ii) a Dirichlet 
Laplacian on an open, connected region, X, with inf spec(kZ) an eigenvalue 
with eigenfunction w,, (e.g., X could be bounded but that is not necessary 
[36]). Let A =M;i(H- E)MaO, i.e., the H on L*(R”, t&dx) or 
L*(X, IJI~ dx) of Section 3. We will call A a regular Dirichlet form. Since 
eetAl = 1, it is easy to prove [27, p. 2551 that e-lA is a PLC. Let X= R” in 
the Schrodinger case and dp = wz dx. 

We are heading towards the following regularity result: Q(A) denotes the 
L* quadratic form domain for A. 

PROPOSITION 4.3. Let A be a regular Dirichlet form. Let 
rp E Q(A) f7 Lm with v, > 0. Suppose that a > 1. Then q” E Q(A) andfor any 
I// E Q(A): 

(va7 Av) = a c [W-‘VP) . WI &. 
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For technical reasons, the natural proofs differ in the Schrodinger and 
Dirichlet cases. We begin with 

PROPOSITION 4.0. Let A be a regular Dirichlet form associated to a 
SchrGdinger operator. Then Q(A) is precisely the set of v, E L2(X, dp) with 
Va, (distributional gradient) in L*(X, Q) and 

(e4) = j IW2 44x); (4.5) 

C?(X) is a form core for A. 

Proof: By Harnack’s inequality [37], v,, is bounded and locally bounded 
away from zero. Suppose first that w,, is C”. Let v E C~(R”). Then an easy 
calculation using the fact that v/O is bounded away from zero on supp 7 
shows that 

(4.6) 

We claim that (4.6) still holds whenever V- E K,, V, E KFC, for in that 
case VwO E LfOC (see [37, p. 4671). Let v, be a sequence of strictly positive 
C” functions so that v/,+ v uniformly locally, VW,+ VII/ in L:,,, and 
Ay/,+ Av in L:,,. Equation (4.6) holds for V, = E + w; ’ Ay/, and wE since VI, 
is C”. Since li/, and v0 are bounded away from zero on supp q, one can take 
limit in (4.6) for E # 0 and obtain (4.6) in general. 

Thus we have established (4.5) if cp E w; i [CF] but Cr is known to be a 
form core for H [37, p. 4601, so w;‘[C,“] is a form core for A and thus 
(4.5) holds for all rp in Q(A). Moreover, if rp E CF, then q = vOp obeys 
r/EL”O, V?jEL2, and supp q linite, so 7 E Q(-A) n Q(V) and thus 

v E WV so v, E Q(A). 
We note that all the above steps hold in the Dirichlet case without extra 

assumptions; we will use this later. 
Returning to the Schrodinger case, all that remains to be proven is that 

given (D E L2(Rv, dp) with Va, E L’(R”, Q), we can find (D,, E Cr so on - V, 
and V(o, - q) go to zero in L2(R I’, dp) (this verifies both what Q(A) is and 
that CT is a core for A). Pick f E Cr, identically 1 near x = 0, let f,(x) = 
f(x/n) and let j, be a standard mollifier. Then j, * (f, y) E CF. As first 
6- 0 and then n + co, it and its derivative converge to II/ and VW in 
L’(R”, dp). 1 

Proof of Proposition 4.3 (Schrcdinger case). If cp EL” n Q(A), then the 
distributional gradient of o’ is easily seen to be a(o’~‘V~ and since this is in 
L’(R”, dp), rp” E Q(A) and the formula for (cp”, Aw) follows from (4.5). 1 
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PROPOSITION 4.4D. Let A be a regular Dirichlet form associated to a 
Dirichlet Laplacian. Then Q(A) is contained in the set of cp E L2(X, dp) with 
Vyl (distributional gradient) in L’(X, dty) and (4.5) holds. C?(X) is a form 
core for A. 

Remark. This differs from Proposition 4.4s in that we do not assert that 
any o with V~I in L* lies in Q(A). Under an additional regularity condition, 
we prove this fact in Appendix C. 

Prooj As we remarked in the proof of Proposition 4.4!$ the arguments 
there establish all facts except for the fact that Cr is a form core. But since 
IJI~ is C” and r~/;r[C,“] is a form core for A, we see that Cr = w;‘[CF] is a 
form core for A. 1 

LEMMA 4.5. Let A be a regular Dirichlet form. Let a, E Q(A) with 
(pEL”O. Then there exist y, E C:(X) so that (i) o, -+ cp, VP,+ Va, in 
L’(X, dp); (ii) q,(x) + o(x) for a.e. x; (iii) sup,, ]]e~,,]]~ < co. 

Proof. Without loss, take v, real valued. By Proposition 4.4, we can find 
6, obeying (i) and then, by passing to a subsequence (using the Reisz-Fisher 
theorem), we can suppose that (ii) holds. Let /]~I’JJ~ = a and pick g E Cr 
with 0 < g < 1 and g(s) = 1 for ]s 6 a. Let F(x) = ]G g(y) dy and 
cpn(x>=WAW Then lI~,ll,<ll% < 00 and l~~-rpIGk~l+-’ 
in L2. Finally vv, - va, = &P,(x)) v&l - VP = I &n(x)) - 11 vrp + 
‘drpn(x))lvkl- V(ol . 1s seen to go to zero in L2 by eploying the dominated 
convergence theorem. 1 

Proof of Proposition 4.3 (Dirichlet case). Let v),, be the sequence given 
by Lemma4.5. Define h(x) =x ]x]‘-’ which is C’ and y,, = h(rp,). Then 
y, + yi by dominated convergence and Vy, = h’(yl,) Vrp, + aqY-‘Vq by an 
argument identical to the one above proving that Vq,, + Vq. 1 

The basic idea of the following is due to Gross [ 181: 

THEOREM 4.6. Let A be a regular Dirichlet form. Suppose that 

\ If I* In If I < Hf,Af 1 + b Ilf II: + Ilf II: In Ilf /I2 (4.7) 

for all f E C;(X). Let c(p) = E; T(p) = 2b/p. Then (4.1) holds for all 
f E @+ and all p E [2, 03). 

Proof: Since C:(X) is a form core for A, Fatou’s lemma implies that 
(4.7) holds for all f in Q(A). Now let f E a+. By Proposition 4.5, fp’2 and 
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f”-’ lie in Q(A). Moreover, since Vfp12 = (p/2)fPl'-'Vf and VfP-' = 
(p - 1) f"-'V' we see that 

cfp’2,Afp’2)= (f,>Af)(p/2)2(l/(p- 1)). (4.8) 

Since f p’2 E Q(A), we can plug it into (4.7) and find 

which is precisely (4.1) for c(p) = (p/2)(p - l)-‘E, T(p) = 2b/p. 
Equation (4.8) shows that (f,, Af) > 0. Since f < ;(p - 1))‘~ < 1, we 

can replace c(p) = f(p - 1))‘~s by E (since $(p - 1))‘~ > f we don’t lose 
very much by doing this and the arithmetic is simpler). 1 

From Theorems 4.2 and 4.6. we see that 

THEOREM 4.7. Let A be a regular Dirichlet form obeying (4.7) for all E, 
some b(E), and all f in Cp. Given t, suppose we can j?nd c(p) so that 

t= I O” C(P) - dp. 
2 P 

(4.9) 

Then 

IWAf IL G eM Ilf 112, 

where 

ME m 5 W4p)W2 dp. (4.10) 
2 

EXAMPLES. (1) Let b(c) = A, + A I ln(c-‘). Take c(p) = t(ln 2)/(ln p)’ 
so (4.9) holds. Then M= A, + A, ln(t-‘), where 

I 

cc 

A,=A,-A,ln(ln2)+4A, In (In p)pe2 dp. 
2 

and thus 

(4.11) 

(2) Let b(c) = AC for c small. Then, choosing c(p) as above, 
M= d,At-‘. Now eMxO = J”? g,(y) eeyx dy where, for small y, the leading 
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behavior of g,(y) is exp(--ctpb) with b = a/(1 - a) (this is connected with 
the calculation in the proof of Theorem 3.3). Thus, if b > 1, we can prove 
that emtAa is ultracontractive. Solving for a we see that 

b(c) =Ac-’ for c small * ]]e-‘Aaf]]oo < C,(t) ]]j$ if a < l/Z + 1. 

This is of course connected with Theorem 3.3. 
(3) b(c) = exp(c-“) c small. Pick c(p) = td(a)/(ln p)“. with a > 1. 

Then M < co if aa < 1. As a result, we see that a < 1 z- e-‘A is ultracon- 
tractive. It is interesting to see that this borderline is the same as for 
Trudinger-type estimates; see [2]. In Section 6, we will find examples where 
b(c) = exp(c-‘) and eetA is not ultracontractive. 

5. ROSEN'S LEMMA 

In the last section we reduced ultracontractive estimates for regular 
Dirichlet forms to the L2 estimate (4.7). Rosen [30] proved such estimates 
by exploiting ordinary Sobolev estimates and certain lower bounds on w0 
(earlier, by a more involved argument, Eckmann [ 141 has exploited Gross’ 
logarithmic Sobolev estimate for V = x2 and v/, estimates). Hence, for the 
reader’s convenience and because neither Rosen [30] nor Carmona [5] 
makes constants explicit, we prove the result using the approach of 
Carmona [ 5 ] : 

THEOREM 5.1 (Rosen’s lemma). Let A be a regular Dirichlet form. 
Suppose that for all 6 > 0, 

-1% Yo < fJH + m (5.1) 

as operators on L2(R”, d”x). Then (4.7) holds with 

b(e) = c + a,,, (5.2) 

for all E < 1. Here a,,, is a universal v-dependent constant. In the Dirichlet 
case or when V > 0, c = 0 and in general it depends only on the Ku-norm on 
V -. 

ProoJ Since both Lp(X, d”x) and Lp(X, dp) norms appear, we use the 
symbol ]] . ]Ip for the former and I] . ]lp;,, for the latter. By replacing f by 
f/]]f]lz,, we need only show (4.7) if ]]f]]2:, = 1. Moreover, (4.7) holds if we 
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show that CA + b - log If] > 0 since we can take expectations in the vectorf: 
But this operator on L’(X, C&L) is unitarily equivalent to EH + b - log ]f] on 
L ‘(X, d”x), so we are reduced to proving 

Ilfll2;, = 1 => log If I < EH + b(c). 

Sobolev’s inequality (27, p. 311 says that 

(5.3) 

if O<cx<v and 2p-‘+v’a=2. If we take cr=v-+ and note that 
(-A) - II4 is convolution with d, Ix] -a, then the above reads 

cf, (-A)-‘?) < C!,” Ilfll;, 

where p-’ = 4 + (4~))’ (we take a rather than f or 1 so we can include 
P = 1, 2). Writing f = g’/‘yl with g E L2” and I+/ E L2, we see that 

II d’2Wp”4d’2 112.2 G C!,” II gll2u 

or for suitable k, (which can be computed from best constants in Sobolev 
inequality) 

g < k6/” II gl/2uW)1’4. 

Since x < x4 + 1, 

g G 1 + k” II gll:“b4. (5.4) 

Given f with ]]fl]2,0 = 1, let A, = {x / ]f]/3wo 2 1) and let %i?;b be its 
characteristic function. Then, by (5.4) 

1ogw Ifl w,> <,& log@ I.4 VII) 

G 1 + 4, II,& lo@ lfl wJl;,(-4 (5.5) 

For all y > 1, there exists a constant d, so that 

(log y)‘” < d, y2. 

Thus 

II& h(P lfl w,>ll::: <d, IIP Ifl volt: = d,P2 llfll:,, = d,P2. (5.6) 

Moreover, we have 

-A<2H+c; (5.7) 
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where ?= 0 if V>, 0 or in the Dirichlet case and, in general, where c” only 
depends on the K, norm of I’-. Equations (5.5)-(5.7) imply that 

log If] < 2k”&“/?4’“(H + fq - log p - log v/o + 1. 

Now, use (5.1) with 6 = s/2 and choose fi so 2k,dt’“/?4’” = 3~; Eq. (5.3) 
results with b(s) given by (5.2). I 

If we combine Rosen’s lemma with the three examples at the end of 
Section 4, we see (a)-(c) below; (d), which is Rosen’s result [30], has a 
similar proof: 

THEOREM 5.2. Let A be a regular Dirichlet form so that for all 6 > 0 

-log I wo I G a+~ + g(4. (5.8) 

(a) If g(6) < O(exp(&*)) for some a < 1 and 6 small, then eBtA is 
ultracontractive. 

(b) O-g@) < O@-‘)f 6 or small, then A” generates an ultracontractive 
semigroup for any a > 1 - (I + 1)-l. 

(c) Ifg(6) < B, + B, log(6-‘), then for t small 

Ile-fAgl(m < Ct--(B1+(1’4)“) IIgl/, (5.9) 
and 

Ile-fAgl(m < C’t--((1’2)“+2*I) I(gll 1’ (5.10) 

(d) Without any restriction on g, e-l* is supercontractive. 

Remarks. (1) (5.10) follows from (5.9) if we duality to note that 

lIeetA 112,1 = IPA llm,2 and Ile-rA Ilm,l < Ile-tta llm,z lIepitA 112.1. 

(5.10) is of particular interest since it tells us about the sup norm of the 
integral kernel. The jv in the exponent is in a real sense a reflection of the 
t-(1’2)” divergence of this sup norm for e . IA Its appearance suggests that our 
arguments have not lost anything as far as leading order is concerned. 

(2) In the next section, we will find an example with g(6) = 
O(exp(G-I)) for which e -‘* is not ultracontractive. 

6. ULTRACONTRACTIVITY FOR SCHR~DINGER OPERATORS 

Armed with Theorem 5.2, we can examine intrinsic ultracontractive 
properties of Schrodinger semigroups. For virtually all these applications, we 
will prove 
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-log wo < av+ + g(d) (6.1) 

which implies (5.1) with an inessential change in g(S). We begin with the one 
dimensional case. 

THEOREM 6.1. (a) Zf V(x) = 1x1” and u = 1, then e-‘* is intrinsically 
ultracontractive if a > 2, intrinsically hypercontractive (but not supercon- 
tractive) if a = 2, and not even intrinsically hypercontractive if a < 2. 

(b) Let V(x)= x2[ln (xl+ 2)]‘. Then eerH is intrinsically ultrucon- 
tractive if b > 2 and intrinsically supercontractive (but not ultracontractive) 
ifO<b<2. 

Proof. The result for a < 2 (due to Carmona [7]) follows from 
Theorem A.8 and the result for a = 2 follows from Nelson’s result [24] 
which specifies precisely that in case A = fi with H = -d2/dx2 + x2, then 
e -tA :LP~L4ifandonlyife-4’~(g-l)/(q-l). 

In all other cases (a > 2 or b > 0), one can prove that if w is in L* near 
fco and obeys 

--t/P + Vi// = Ev (6.2) 

then near * co, 

1 w(x)1 - C,(V(x) - E)-“4 exp(-IV) (6.3a) 

(6.3b) 

in the sense of the ratio going to 1. (6.3) can be proven either by variation of 
parameters or by subharmonic comparison arguments (see Appendix B). 

Case 1: a > 2. Then W(x) - x1+(‘/‘)’ + C and so -log w. - x1 ’ (r/2)0 < 
6x” + c, d-g(*) with g(a) = (a + 2)/(a - 2). Thus A is intrinsically ultracon- 
tractive. Indeed A” is intrinsically ultracontractive if a > a-’ + 4 (by 
Theorem 5.2(b)). 

Case 2: b > 0. Then -log w. - x2(lnx) (1’2)b. By elementary calculus, 
for 6 small the maximum of -x*(ln~)“‘~‘~ + 6x2(ln x)” occurs at 
x - exp(ca-2’b) and so g(6) can be chosen C, exp(l)b d-2’b). If b > 2, we 
obtain intrinsic ultracontractivity and for 0 < b < 2 we certainly have 
intrinsic supercontractivity. 

Case 3: 0 < b < 2. Let wI be the second eigenfunction for H. Then 
y,/vo - c”, exp(f(E, -E,) (t V(y)-“* dy). Since 1: V(Y))~” dy = 00 
(precisely if b > 2), v/i/w is not bounded and so e-tA cannot be intrinsically 
ultracontractive. 1 
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Remarks. (1) V(x) = x*(ln x)’ is the promised example with g(6) = 
C exp(b-‘) and no ultracontractivity. 

(2) One can show by the same methods that if V(x) - 
x’(ln x)*(ln In x)‘, then there is not ultracontractivity if c < 2 and there is of 
c > 2. 

To obtain more general ultracontractivity results, one must obtain lower 
bounds on wO. In this regard, the following comparison theorem is useful: 

LEMMA 6.2 (see e.g., [33]). If W(x), V(x) - W(x) both go to infinity at 
00 and if wow, I+YO~ are the wO’s corresponding to -A + W and -A + V, then 

v/oy(x) < wIl-4 

for some constant c. 

THEOREM 6.3. Suppose that for some C, , C, > 0, C,, C,, we have that 

c, lxlb + c, < V,(x) < c, lXIU + c,, 

where fa + 1 < b. Then -A + V is intrinsically ultracontractive. 

Proof. -A + C, /xl= + C, has a w0 which looks like 
X -a/4 exp(-fi(a + 1))’ ]x](“*)~~‘) at co (since a > 2 is implied by 
fa + 1 < b < a). By the lemma, the w0 for -A + V obeys 

-In w0 < C ]x](1’2)a+ ‘. (6.4) 

As in Case 1 in the proof of Theorem 6.1, we obtain 

g(4 < Cd-“, a=(a+2)/[2b-a-21. 1 

Remark. (6.4) can also be obtained by a simple path space estimate. 
One need only write v,(x) = E,(exp(-Ji(V(b(s) - E) ds) p,(b(t))). Pick 
t = xi-(“*)’ and estimate the contribution of paths with lb(s) - 
(1 - s/t)x] < 1. 

Sokal [42] has noted a rather striking implication of Theorem 6.3 for 
P(o),-stochastic processes (see [43, p. 571 for definition). Consider the 
conditional distribution for q(t) given that q(0) = a. This is just 

d&) = w&- ’ exp(-I t I W - EJM, x> wdx) dx 
E F;,(x) dx 

with H= -d*/dx* + P(x) on L2(-co, co); P a polynomial with 
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lim IxI+4) P(X) = CO. Ultracontractivity (i.e., deg P > 2) implies a bound, 
uniformly in a (but not in t) 

(and it is easy to show lim,,,, F,(x) exists: One proof uses the eigen- 
function expansion, the fact that ~,,i,u;l has a limit any eigenfunction n and 
ultracontractivity to control the convergence of the series; another proof [42] 
uses the FKG inequalities to note that s g(x) F,(x) dp(x) is increasing in a if 
g is increasing together with the above uniform bounds on F,). Thus, taking 
q(0) = a + co does not drag q(t) off to infinity; rather, the process 
“recovers” to its typical values very quickly. This is connected to the 
discussion in Rosen & Simon [41]. This behavior is in sharp contrast to the 
behavior of P(cJI)~ lattice theories which are definitely not ultracontractive 

PI. 
Two dimensional operators of the form -A + x”y” have recently produced 

some interest, they have compact resolvent although x”y” t, 03 at co [36]. 

THEOREM 6.4. None of the operators H = -A + x”y” is intrinsically 
hypercontructive. 

Proof. Let f, g E C;(R) with i f2 dx = I g2 dx = 1 and let 

cp,,(x, y) = j-(x - x0) g( yxp2)4) xy4y 

where /3 = 2k/k + 2. Then for x,, large, 

while 

ho3 (x2 + Y’> Px, = 0(x3. 

Since p < 2, it is false that H > cx2 - d for any c, d so by Theorem A.8, H is 
not intrinsically hypercontractive. 1 

The above suggests that the k -+ co limit, i.e., the Dirichlet Laplacian for 
the region {(x, y)] ]xy ] < 1 } is hypercontractive. Indeed, this is true; see 
Section 9. 

As a final subject, we want to discuss uniform hypercontractive estimates 
in the semiclassical limit. The usefulness of such estimates in the theory of 
multiple wells was pointed out by one of us [9] and this question was one of 
our motivations in initiating this work. Let V(x) be a C’O function of R” 
obeying 

(a) V(x) > 0; for some R and E > 0, V(x) > E if jx ] > R ; 
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(b) V(x) = 0 for some x(l),..., xCk) only and (#B/axi axj)(x”‘) is 
nonsingular for a = l,..., k. Define 

H(g) = - fA + gqg-“‘X). (6.5) 

Define vg to be the w0 for H(g). We will suppose 

lim 
I g-t’= l~-gl/Zxl”)/<, I v,(x)12 d”x > 0 (6.6) 

for a = 1, 2,..., k so the ground state lies in all the semiclassical wells (see 
[20, 10, 35, 211 for a discussion of such tunneling problems). 

Introduce the symbol 11 . ]lp;g by 

Ilfll;;, =I If(x>l” I v&)12 d”x 

and as usual 

m= w,vm--E,(d) wg. 
We will also need to assume that for (x] > R, 

c, lxlb < Vx) < c, WY $z+l<b+2. (6.7) 

THEOREM 6.5. Let (6.6) and (6.7) hold. For a suitable C, T we have for 
alEg> 1, 

Ile-T~(g)fl/4;g< C Ilfl12:,. 

Proof By general principles, E,(g) is bounded. Thus, by Rosen’s lemma 
and Theorems 4.2, 4.6 it suffices to prove that 

-log r/,(x) < ci gV(g- 1’2x) + c* (6.8) 

for constants c,, c, independent of g. 
Define q,(x) = wg(g1’2x) so (6.8) is equivalent to 

-log r,(x) < Cl ‘!mx) + c2. (6.9) 

We also note that qg obeys 

[- fA + s’W1 rg = @o(g) ~8. (6.10) 

We also note two additional preliminaries which follow from [35]: 
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(i) On any compact set K we have 

r,(x) > C, e-c2g all x E K, g > 1. (6.11) 

(ii) For lx-xx,]< g-l’* 

r,(x) > c, * (6.12) 

(6.11) is proven in [35], where lim,,, (l/g) In qg(x) is computed uniformly 
in x E K; actually, the simple lower bound (6.11) can be obtained by a 
simple estimate without recourse to the theory of large deviations (just 
modify our argument below controlling the region ]x - x, I< 8). (6.12) is 
proven [35 ] by showing that w, converges in L O”-norm to a combination of 
Gaussians centered at the points x@. 

From (6.11) on the ball of radius R, the hypothesis (6.7) and a 
comparison argument using (6.10), we see that for Ix] > R, 

q,(x) > Cle-C2gecC4g’“‘0, p++ 1. 

Thus, by the hypothesis (6.7) again, (6.9) holds in the region Ix] > R. 
By (6.11) again, we can be sure that (6.9) holds in the region {x ] Ix] <R, 

Ix - x@) I > S} for a fixed small 6. We can choose 6 so that 

A (x - x(@)* < V(x) < B(x - x(a))* if ]x-xx(‘)]<8. (6.13) 

Using (6.12) and (6.13), we want to prove that if Ix - x(@ I < 6, 

rig(x) 2 C, exp(-C, g(x - x(9*), (6.14) 

in which case we have (6.9) in the last region needed. Let 
f(s) = (1 - T-‘s)x + T-‘sx,. By the Feynman-Kac formula and (6.10), 
since E,(g) > 0, 

qg(x) > E,(e~g2S~V(b(S))dS q,@(T))) 

> de-d2g”‘“-“~)‘Tp,(lb(s) -f(s)1 < g-l’*; 0 < s < T), (6.15) / 

where E, (resp. P,) is expectation (resp. probability) for Brownian motion 
starting at x. We get the second inequality (following an idea of [7]) by 
looking at the contribution of paths with ] b(s) -f(s)] < gP “*, using (6.13) 
to get an upper bound on ji V(b(s)) d s and (6.12) to estimate q,@(T)) from 
below. 

By the Cameron-Martin formula and Jensen’s inequality (see [7]): 

px(lw) -f(s)1 < g-“*; 0 G.9 < T) 

> e-(“2)f~j(s)2ds P,(lb(s)l < g-l’*; 0 < s < T) / 

=e -dJT-‘(X~X((11)2~g(lb(~)I < g-l’*; 0 < s < T}. (6.16) 
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Choosing T = g-’ and noting that the scaling 

P,(lb(s)l < g-1’2; 0 <s < g-1) 

is a positive constant, we obtain (6.14) from (6.15), (6.16). I 

Remarks. (1) (6.7) is a natural condition, given Theorem 1.3, if we 
want e- Tfi(g) to be hypercontractive even for fixed g. 

(2) Because, in the limit, H(g) looks like a harmonic oscillator near 
each x(O), we cannot hope to have anything better than hypercontractivity 
uniformly in g. 

(3) For simple cases, like the one-dimensional double well, one can 
use the theory of large deviations to prove this theorem directly. 

7. DIRICHLET LAPLACIANS AND SECOND ORDER 
ELLIPTIC OPERATORS: LOWER BOUNDS ON tyO 

AND INTERIOR CONDITIONS 

In the last three sections of this paper, we want to discuss intrinsic 
contractive properties of Dirichlet Laplacians. The key will be to verify (5.1) 
in two steps. In this section, we will concentrate on obtaining lower bounds 
on vO(x) in terms of the distance to the boundary, and in the next, we will 
see when suitable functions of this distance can be bounded by the Dirichlet 
Laplacian. As we already emphasized in the Introduction, there are bounded 
regions for which the Dirichlet Laplacian fails to be intrinsically ultracon- 
tractive so one must expect various regularity conditions on the boundary to 
be relevant. 

We begin with the case of smooth boundary. This case can be easily 
analyzed for more general objects than Laplacians. Let X be a bounded open 
connected subset of R” with C”O boundary, 3X (i.e., there is a C” function, 
F(x), so that X= {x 1 F(x) > 0) and so that (VF)(x) does no_f vanish for 
x E 3X). Let a(x) be a Coo-(v x v)-matrix valued function on X with values 
in the real symmetric matrices. Assume for some A, p > 0 one has the matrix 
inequality 

11 <a(x)<pl (7.1) 

and define 

If= - 2 -f- aij(x)$ 
i,j=1 axi J 

(7.2) 

with Dirichlet boundary conditions, i.e., H is the form closure of the obvious 



364 DAVIES AND SIMON 

form on C?(Q). The relevant lower bound on w,, follows from a 
modification of the Hopf boundary point lemma [ 15 ] : 

THEOREM 7.1. Let p(x) = dist(x, R”\X). Then, for a suitable constant 
a > 0, 

v,(x) > 4x> for all x E a. (7.3) 

ProoJ It is not hard to show that p(x) is C” in a neighborhood of aX 
and that IVpl = 1 there. Thus, we can find a C” function f on 2 with 
(i) f r ax= 0, (ii) 1 Vfl = 1 near U, and (iii)f > p on %. Clearlyf* E D(H) 
and by a direct computation, 

Hdf’>(x) = -2f(x) a(x) - 2 C aij(x) g g, 
i,j I J 

where 

Since a is bounded, the first term in (7.4) goes to zero as x + 3X while the 
second is bounded by 21 by (7.1) and the fact that 1 Vfl = 1 near 3X. Thus, 
there exists E with 

if p(x) < E and thus a (large) number b so that if p(x) < E, then 

g(x)= [Hdf+ b*f*)](x)<-1. (7.5) 

By (7.5) and the fact (Harnack’s inequality) that v/,, is strictly positive on 
{x I p(x) > e}, we see that 

w&> 2 c&) (7.6) 

for some c > 0. Thus, since Hw,, = E,t,uo and H-’ is positivity preserving 

I//~ = E,H-‘w~ > cE,H-‘g 

=E,,cGf+b*f)>E,cf>E,cp 

as desired. I 

An estimate like (7.3) is definitely false when X has corners. For example, 
-A on a v-dimensional hypercube has a w0 which vanishes as p” at a 
“corner.” There has been extensive study of the behavior of eigenfunctions of 
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-A on polyhedra, see, e.g., Grisvard [ 171. For example, for X the interior of 
a polygon in R*, the best one can do in w0 > cp4 is to take 

P = 7ZIa, (7.7) 

where a is the minimum angle in 8X. For studies of boundary behavior in 
more general regions, see Oddson [47] and Miller [45,46]. 

Let A c S”- ’ be an open set. Define, for x E R” and E > 0, 

C(x,A,e)={yIO<Ix-yyl<,s;y-x/ly-XIEA] 

the (truncated cone at x with base A. Given A c Sue’, we can define the 
Dirichlet Laplace-Beltrami operator L, on A by restricting the 
Laplace-Beltrami operator on So-’ to C;(A) and closing the form. Let 1(A) 
be the smallest eigenvalue of L, and define a(A) by a > 0 and 
a(a+v-2)=A(A). 

DEFINITION. Let A be an open subset of S”-‘. We say that X, an open 
subset of R” obeys an A-interior cone condition if there exists an E > 6 > 0, 
/I > 0, and for each x E X with p(x) < 6, a point y(x) E 8X and a rotation R, 
so that (see Fig. l), 

x E C(Y(X), R,(A), e) =X 

dist(x - y(x)/lx - y(x)l, S”-‘\R,(A)) > /?. (7.8) 

THEOREM 7.2. Let X obey an A-interior cone condition. Then for some C 

w,(x)> CP(.wA), (7.9) 

where v/0 is the lowest eigenfunction of the Dirichlet Laplacian in X. 

FIGURE 1 
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Proof. We have 001) s inf(v/,-,(x) 1 p(x) >p) > 0 if ,U > 0 since w0 is 
continuous and cannot vanish in X by Harnack’s inequality. Let Q, be 
defined on S”-’ by L,0, =1(A) R,, Q, > 0 and supA Q,(w) = 1. Given x,, 
with p(x,,) < 6 (6 given by the A-interior condition), consider 

v&) =f(lx - Y(X,)l) f?4(qx - YhYlx - Ykl)ll) 
defined on C(y(x), R,(A), E), where f obeys 

-f” - (v - 1) r-lf’ + A(A) r-y= E,f, 

where E, is the lowest eigenvalue of -A, and, where f obeys, where f obeys 
f(0) = 0, f(e) = D(E). Then v,, and q both obey -Au = E,u on 
C(y(x), R,(A), E) and v,, > v on X. By a maximum principle argument (see, 
e.g., [ 12]), w,, > r,~ on all of C. It is easy to prove that f(r) is asymptotic 

r@‘(A) for r small, so by (7.8) (which lets us bound 
F4~qx, - YcG)llx - Y@oll) away from zero), (7.9) holds if p(x) < 6. The 
bound when p(x) > 6 (for suitable (c) is trivial since O(S) > 0. 1 

EXAMPLE. If v = 2, and A is the subset of the circle { 0 10 < 0 < e,}, then 
QA = sin(n0/0,), A(A) = (n/e,)2, and a(A) = rr/&. In particular, this yields 
the correct lower bound for polygons [ 171. 

The final issue we want to discuss in this section concerns lower bounds 
on the I,M,, associated to the Dirichlet Laplacians of certain unbounded 
regions. For simplicity, we restrict ourselves to two dimensions and take X 
to have the form 

(7.10) 

where F obeys: (i) F(,, is bounded and C’ on [0, co), (ii) F(x) + 0 as x+ co, 
(iii) F’(x) < 0 for all large x, (iv) F’F-’ + 0 as x -+ co. The examples to 
keep in mind are F(x) = (x + 1))’ ln(x + 2)-O. 

THEOREM 7.3. Let w,, be the ground state eigenfunction for the Dirichlet 
Laplacian in a region X given by (7.10) with F obeying (i)-(iv) above. Let 
p(x, y) E dist((x, y), R’\X). Then for suitable C, D > 0, 

w&, Y> > 0(x, Y>’ exp(--DxF(x)-‘1. (7.11) 

Remarks. (1) It is probable that with some additional estimates, we 
could replace p(x, y)’ by p(x, y). 

(2) In the next section, we will obtain an upper bound on I//,, by 
exp(-c J”: F(z)-’ dz) which, in typical cases, looks like exp(-ExF(x)-‘) so 
(7.10) captures the leading crude correct rate of falloff along the axis y = 0. 
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(3) Our method of proof follows that of Agmon for decay of N-body 
eigenfunctions (Agmon’s proof is unpublished but is described in 
Simon [35]). Alternatively, one could use path integral estimates. 

ProoJ By the argument in Theorem 7.1, (7.11) holds in any region 
{(x, y) E XI x < a} with a fixed, so we need only check it if x is sufficiently 
large. We thus consider a > 1 so large that F(a) < 1 and that if x > a, 

F(x + 1) > {F(x) (7.12a) 

-F’(x) < 1 (7.12b) 

which is possible by (ii), (iv). 
Suppose now that a < a < co and 0 < b < F(A) and set c = F(a) - b. Let 

R be the rectangle 

We claim that R c X. This is equivalent to 

G@> = I;@ + #‘(a) -P)> - tQ3 + F(a)) > 0 (7.13) 

for /I = b. (7.13) holds because G(JI = F(a)) = 0 and dG/d/3 < 0 by (7.12). 
Let G be the function 

g(x, y) = cos 2- 
2 b +:,2c) sinh (: (: a i-::/ix)jsinh (+&) * 

Then Ag = 0 and g = 0 on three sides of i?R. On the fourth side (x = c/2, 
1 y ] < b + c/2), g < 1 while w,, is bounded below there (since c < F( 1) is 
bounded). Thus w,, > dg on R for a d independent of a, b. In particular, 

Since fc <p(a, b) < c, this implies (7.11). 1 

8. DIRICHLET LAPLACIANS: 
QUASIRADII AND EXTERIOR CONDITIONS 

In the last section, we found upper bounds on -1n w,, in terms of the 
geometry of X, explicitly by functions connected to p(x) = dist(x, R”\X). In 
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this section, we want to bound functions of p by H so that in the next section 
we can prove that (5.1) holds. Our basic input will be an inequality of 
Davies [ 111. 

DEFINITION. Given an open set X in R”, x E X, and a unit vector e, let 
d(x, e) = inf{ 1 r ] 1 x + re & X} (so p(x) s inf, d(x, e)). Define the quasidistance 
4x1 by 

q(x)-* = 
I h,(e) 4x, elp2, ,yL’-l (8.1) 

where dp,, is the usual normalized invariant measure on S”-‘. 

Then Davies [ 111 proves 

THEOREM 8.1. For any X, 

4 -* < 4v-‘H,, (8.2) 

where H, is the Dirichlet Laplacian on L*(X, d”x). 

While (8.2) is powerful, its proof is not hard; by a one dimensional 
argument, one proves that d(x, e))’ < 4(e. V)” and then averages over e. 
Since d(x, e) > p(x) we immediately have 

4(x) 2 P(X)* (8.3) 

In order to go from (8.2) to useful bounds on -In vO. we will need an 
estimate like q(x) < cp(x). This is certainly not universally true as a ball in 
R* with a line segment removed easily shows. The following definition and 
the idea of Theorem 8.2 are also due to Davies [ 111; we provide them here 
for the reader’s convenience. 

DEFINITION. We say that X obeys an exterior cone condition with angle 
0 and size r if and only if for any x0 E 3X there exists a unit vector e(x,,) so 
that 

is disjoint from X. 

Given 8, let a,(& a) be twice the p,, measure of those e E S”-’ with 
le - (LO,...)1 < a/(1 + ) a sin 0. Up to inessential details, the following is 
Theorem 18 of [ll]: 
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THEOREM 8.2. If X obeys an exterior cone condition with angle 19 and 
size I, then for all x with p(x) < a - ‘r( 1 + sin 0) ’ we have that 

q(x) < (1 + a) a,(4 a>-‘%(x). (8.4) 

Theorems 8.1 and 8.2 immediately imply 

COROLLARY 8.3. Let X be a region which obeys an exterior cone 
condition so that either (i) r = 00, or (ii) p(x) is bounded on X. Then for a 
suitable constant c, 

P -2 <CH,. (8.5) 

Remark. For the applications in the next section, it suffices that 

P Pa < cH, for some a > 0 (although the power in the rate of divergence of 

Ile-tHl12,m will depend on a). We say that X obeys an exterior trumpet 
condition of degree /3 > 1 if and only if there is a C and r so that for any 
x,, E 8X there is a rotation R(x,) with R (x,) T(C, r, p) disjoint from X, where 
T is the trumpet T= {(x1 ,..., x,) IO < x, < r, 1(x1 ,..., x,~, , O)l < Cx!}. The 
proof of Theorem 18 of [l l] shows that q(x)-2 > &2p(4-‘)(v-1), so we 
have a bound of the form pP* < cH, so long as p < 1 + 2/(v - 1). By 
working slightly harder, one can probably obtain an estimate for /? up to 
1+2/(v-3)butifp~1+2(v-3)-‘,(andv>3),andXistheexteriorof 
such a trumpet, then the tip of the trumpet is a point with q(x) # 0 and 
p(x) = 0, so one can not obtain a pma < cH, estimate, at least via 
Theorem 8.1. 

We can specialize this last corollary to horn-shaped regions of the form 
(7.9): 

COROLLARY 8.4. Let X be a horn-shaped region of the form (7.10), 
where F obeys (i), (ii). Then 

(a) P~~<c,H~, 

(b) F(X)-2 < c2Hx. 

Proof X obeys an exterior cone condition with 8 = n/4, r = co, so (a) 
follows from Corollary 8.3. For (b), we need only note p(x, y) <F(x). 1 

While the bounds in the last few results interest us here primarily because 
of their relevance to (5.1), we note they have implications for decay of I//~. 
This is because of the following result, essentially in Agmon [ 11. 

THEOREM 8.5. Suppose that H, is a Dirichlet Laplacian in an open 
region X and let W obey W(x) < H, as an operator inequality, and let E be 
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any eigenvalue of H, with eigenvector IJI. Suppose that {x 1 W(x) < E} is 
compact (in the open set X). Let 

.4(x) = inf [j: \/max(O, W(y(s)) - E) 1 it(s)I ds 1 y(O) = x, y(s) = 0) . 

Then for all E > 0, e”-“*V/ E L*. 

In most cases, one can go from an L* to an L* bound; see, e.g., [ 371. 

EXAMPLE 1 (Bounded X with smooth boundary). Theorem 8.1 implies 
that a result for the W determined by v/4qP2. In the case of smooth 
boundary, it is easy to see that q(x) - v+“*p(x) for x near 3X so v/4q-* 
diverges as $’ near 8X and thus A(x) - f In&c-’ as X approaches 8X. 
Then from Theorem 8.1 and 8.5, one obtains a bound by C#“*-“*4 Since 
the true behavior is linear p, this is not so impressive but we still find it 
remarkable that these rather indirect methods yield a result that is so good. 
We note that even in one dimension, where on L*(O, a), H, > ix-’ has the 
optimal constant, Agmon’s method only yields to x1’* decay. 

EXAMPLE 2 (Bounded X with exterior conditions). For exterior cone 
conditions, one gets vanishing at least as fast as p” for some a and with 
exterior trumpet conditions no vanishing whatsoever by this method! It is 
known (see Appendix C) that some exterior trumpet condition already 
implies w vanishes on aX. 

EXAMPLE 3 (Horn regions). From Corollary 8.4(b) and Theorem 8.5, 
one obtains an upper bound of the form exp(-ltF(x)-’ dx) on v,(x, y) for 
horn-shaped regions. As we already explained, this yields for “reasonable” F 
upper and lower bounds on v,(x, 0) which are qualitatively the same, i.e., 

C, exp(--D,xF(x)-‘) < v,(x, 0) < C, exp(--D,xF(x)-‘). (8.6) 

We remark both arguments apply if we take instead Xc R”, and X = 
{(x * ,.., X”} I I@, 7.a.5 x,- 15 O)] < F(x,)}. One obtains (8.6) for ~~(0 ,..., 0, 
X” = x). 

9. SOBOLEV ESTIMATES FOR DIRICHLET LAPLACIANS 

In this section, we combine the preliminaries in Sections 5, 7, and 8 to 
obtain intrinsic ultracontractive estimates for Dirichlet Laplacians. Often our 
results will be good enough to obtain Sobolev estimates up to the boundary. 
We will require some geometric restrictions on X, so we begin with an 
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example which shows that intrinsic ultracontractivity does not hold for the 
Dirichlet Laplacians of all bounded (open, connected) regions. 

EXAMPLE 1. This will be a region in R2 obeying an exterior cone 
condition (with angle 0 arbitrarily close to z/8). The region will depend on 
three decreasing sequences of positive numbers {R,}~!o{d,}~? r { l,}n” ,with 
,YJ R, < co, 2 I, < 00, and d, < R,. Basically, the region will be shaped like 
a fir tree consisting of diamonds of size 2R, connected by corridors of height 
1, and width 2d, (see Fig. 2). Define y, inductively by y, = 0, y, = y,- I + 
I,, + (Rn + Ram,). Let 

Q,= ~(x~Y)IIxI+IY-Y,I <R,L 

C, = ((~3 Y) I I4 < 6, Y,-, < Y < Y,L 

and X= (JczO Q, U (Jz=“=, C,. We will show if the d, are sufftciently small 
one does not even have intrinsic hypercontractivity. We will do this by 
obtaining upper bounds on w0 and lower bounds on b,, the diagonal part of 
the integral kernel ePtHo, which show that j” bfw;* d”x = co for all t, so ePfAo 
cannot map L’(X, vi d”x) to L4(X, wi d”x) for any t by the arguments in 
Theorem 3.1. 

Let p(y,,) be the width of the slice R n {(x, y,,)} so p(x, y) < {p(y) and 
thus, since we have an exterior cone condition, p(y)-’ < cH, by 
Corollary 8.3. Thus by Theorem 8.5, e(l-E’a~o E L*. Therefore, if we define 

X(x, y)=i l,d,:‘=A, if Yn <Y < Yn+15 (9.1) 
1 

FIGURE 2 
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we have that 

esdtyo E L2 for some 6 > 0. (9.2) 

Now let S(t, R) denote the minimum value of e-‘H(R)(x, x) for 1x1 < +R, 
and H(R) the Dirichlet Laplacian in the square of side R fl. By scaling 
S(t, R) = R-2S(t/R2, 1) and it is easy to see that ,S(t, 1) > C, ePc2’ so 

S(t, R) > C, R -2 exp(-C, t/R ‘), (9.3) 

By a comparison argument with X the region of Fig. 2, 

b,(x, Y) < C,Ri2 exp(-C,t/RfJ, 

if x2 + (y - y,)’ < ({R,J2. Thus by (9.1~(9.3) and the arguments of 
Theorem 3.1, we have 

THEOREM 9.1. If for all 6 > 0, II > 0 we have 

Te 6An exp(-A/R i) = co 

then the region of Fig. 2 has a Laplacian which is not intrinsically hypercon- 
tractive. 

For example, if a, /I, y < 1, 1, = a”, d, =/?“, R, = y”, then it suffices that 
/3 < ay2. 

We are struck that the fir tree region is precisely the sort of region for 
which the Neumann Laplacian has a resolvent which is not compact. We 
wonder if there is a general relation between compactness of the Neumann 
Laplacian and intrinsic contractivity of the Dirichlet Laplacian. 

With the negative result in mind, we state the following positive results: 

THEOREM 9.2. Let X be a bounded open connected subset of R” with C” 
boundary. Let H have the form (7.2), where a is L” and obeys (7.1). Then 
e -M is intrinsically ultracontractive, indeed for k > 1 + v/4, 

Ilp(x>l G v,(x) llW+ l)%/l~qx,cw (9.4) 

THEOREM 9.3. Let X be a bounded open connected subset of R” which 
obeys an A-interior cone condition and an exterior cone condition. Then eetH 
is intrinsically ultracontractive, indeed 

Ile-tallm,2 < Ct-“, t< 1, (9.5) 

with P=$v+ia(A). 
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Proof of Theorem 9.2. We give a direct proof which does not go through 
logarithmic Sobolev inequalities although there is an alternate proof along 
the lines we use to prove Theorem 9.2. 

By a standard Sobolev estimate [33], one has 

so, since any IJI E D(Hk) vanishes on 8X, we have 

Theorem 7.1 completes the proof. 1 

Proof of Theorem 9.3. By Theorem 7.2, 

-1n vO(x) < a(A) In p(x)-’ + c 

and by Corollary 8.3, 

p(x)-’ < CH,. 

Obviously, for some C, In y < y* + C, so putting y = 8”*u, 

and thus 

Thus Theorem 5.2 implies (9.5). ! 

COROLLARY 9.4. Under the hypotheses of Theorem 9.3, jix any real 
I > iv + $a(A). Then there is a constant C so that for any u, E DLZ(Hk) we 
have 

ProoJ By integrating the semigroup to get a power of resolvent, we get 
that if I > p (to make the integral converge at I = 0), 

which easily yields (9.6) by letting q = V/R ‘H’p = I?‘w, ‘q. 1 

Remark. For a square, we claim that (9.5) and (9.6) are optimal 
(modulo the fact that 1 > ... , might be able to be replaced by I > .*. ). For 
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an estimate on (A))” from L2 to L m easily yields an estimate of eP8 by t-k 
since 

so (9.5) is optimal if and only if (9.6) is optimal. Next we note that, by 
duality and interpolation, 

Ile-2fAllco,l G 1141~,2 
while by interpolation, 

lle-f%,2 6 Ile-‘fill,,,3 

so we need only show that 

to conclude that (9.5) is optional. For a square, A is a sector of open 
angle 7c/2, so d(A) = 4, a(A) = 2, and 28 = 3. But ]]e-“‘I(,,, is the square 
of this quantity for an interval and is easy to show that 

sup,,), e --tH(x, y) ~,(x)-‘~~(x)-~w~(y)~’ is O(t-“*) for an interval. 
Various authors, e.g., Jerison & Kenig [44] discuss boundary vanishing in 

terms of vanishing of the Green’s function G,(x, y), the integral kernel of 
H-‘. In this regard, the following result is interesting: 

THEOREM 9.5. Let X obey the hypotheses of Theorem 9.3. Fix x E X, 
and a neighborhood N of x, with 15 c X. Then for suitably nonzero constants 
c, d, depending on x, and N and all y 6Z N, 

4x1 ‘clo(~) < G,(x, Y> G 4x> V,(Y), 

c, d are bounded and bounded away from zero as x runs through a compact 
subset K of X, and y runs through the complement of a neighborhood of K. 

ProoJ We give the details for x fixed, leaving it to the reader to check 
that c, d obey the final uniformity statement. To get the lower bound, we 
note that 

G,(x, y) =lm (eP’)(x, y> dt 
0 

> I * (P%x, y> > two(x) vo(Y>l 
1 

by Theorems 9.3 and 3.2. To get the upper bound, pick 9 E C?(X) with 
q(y) = 1 if y 6? N and q = 0 near x. Let u(y) = q(y) G,(x, y). Then 
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u E D(H) and HU is a smooth function supported in N. Thus u E D(H’) for 
all 1, so by (9.6) 

V(Y) G,(x, Y) G MY) 

which is the desired upper bound. 1 

As a next subject, we consider regions of the form (7.10). 

THEOREM 9.6. Let X be a region of the form (7.10), where F obeys the 
four conditions listed after (7.10). Then 

(a) If F(x) < Cx-’ for x large, then e --thy is intrinsically hypercon- 
tractive. 

(b) ISlim,,, xF(x) = 0, then e- tHX is intrinsically supercontractive. 

(c) IfxF-’ < EF-~ + exp(F) for some c > 0 and E small, then e-lHx 
is intrinsically ultracontractive. 

Proof. (b), (c) follow from Theorem 5.2, Theorem 7.3, and Corollary 8.4. 
(a) replaces Theorem 5.2 by Rosen’s result [30]. 1 

Remarks. (1) If we take F(x) = (x + 1))” ln(]x] + 2)-O, we obtain 
intrinsic hypercontractivity if /I = 0, a = 1, intrinsic supercontractivity if 
a = 1, (x < Jl< 1, and intrinsic ultracontractivity if a = 1, /I > 1, or a > 1. 
We are struck by the fact that the borderline of our method for ultracontrac- 
tivity is that for infinite volume. 

(2) In higher dimensions, i.e., regions {(x, y) 1 / yl< F(x)} with 
y E R”- ‘, one still the same borderlines as if v = 2, but the borderline for 
infinite volume is now F(x) = x-““-~, i.e., all these higher dimensional 
examples with even hypercontractivity have vol(X) < co. This leads us to 

Question. Does intrinsic ultracontractivity of a Dirichlet Laplacian 
imply that vol(X) < co ? 

As a final subject, we want to note intrinsic ultracontractive estimates for 
operators of the form H, + V, where H, is a Dirichlet Laplacian of a region 
X and VE K,. The first result we require shows how to use ultracontrac- 
tivity to obtain information in perturbed ground states (cf. Theorem 3.3). 

THEOREM 9.7. Let X be a region in R” for which ePtHo is intrinsically 
ultracontractive. Let V E K, and suppose that G0 is the ground state of 
H, + V. Then, for any a > 1, 

dxbdx)ll’a >, &dx) > C,[v,(x)l*~ (9.7) 

where w,, is the ground state for H,. 
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ProoJ By Holder’s inequality in path space, if p and q are dual indices 

(e-“OIJo)(x) < (e-(*,+~)~,)‘IP(x)(e-‘“O-(41P’~‘) @pyx) 

< cbqP(x), 

where we have used the fact that @, is an eigenfunction of H, + V and that 
e -w~--(~‘~)‘) is bounded from L2 to La’ since V E K, (see [37, p. 4601). By 
ultracontractivity and Theorem 3.2, (e~HO~O)(x) > c(w,,, I,?,) wO(x). Choosing 
p = cz, we get the second inequality in (9.7). 

The other half is similar: 

W (HO+Y)~O)(x) < (e~HO~o)lIP(x)(e~(HO+qV)~o)‘Iq(x) 

and e-“0 - %~4vo~KJvo’ I 

Remark. For some X, using methods of Brossard [4] and Zhao [40], one 
should be able to prove (9.7) with a = 1. 

THEOREM 9.8. The conclusions of Theorem 9.3 hold if H,, is replaced by 
H, + V with VE K, with the sole change that one needs /I > {V + ia( 

ProoJ Since V is in K,, H, + V > +H,, - c for some constant c, so 
P -’ < d(HO + V + c). By the last theorem, for any y > 1, I,?, > cpym. Given 
these estimates, we just follow the proof of Theorem 9.3. 1 

APPENDIX A: 
HYPERCONTRACTIVITY AND tr(e-“‘) 

In this appendix we investigate the status of the assumption 

tr[e-*‘I < co all t > 0, 

in relation to hypercontractivity. For ultracontractive semigroups the 
situation is very simple. 

LEMMA A.l. ZfH=-A+VinL2(lRN),whereO<VEL~,,ande~H’is 
intrinsically ultracontractive, then 

tr[epH’] < co (A-1) 

for all t > 0. Indeed, for any a > 0, one has 

H>ax2-j3 

as quadratic forms for some p E IR. 

(A.21 
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Proof The first part is abstract in nature [9]. By Theorem 3.2(iv) we see 
that &(x, y) is a bounded integral kernel. But X has measure unity with 
respect to p, so a’, is a Hilbert-Schmidt kernel and 

tr[eFH’] = Ile-“‘llz 

The second part depends upon a use of the Trotter product formula to 
establish that 

a,(~, y) < (471t)-N’2e-(X-y’2’4’. 

Using Theorem 3.2(vi) we see that 

%(X) < c5 4x3 0) %P) - l 
< ce-x=/4t 

for all t > 0. By varying t we conclude that 

yn= e 
I 

*ax2qO(X)* a!x < CD all a > 0. 
RN 

By Segal’s lemma [27, p. 2601 

11 ep(H-ax2) I( < IIeax2emH 11 

= Ile nxze-fi 1) 

and if g E L2(lRN, qO(x)* dx) then (the L” norms are w.r.t. qi dx) 

Ile ax2e-t7gl12 < Ilenx2112 II ep”gll, 

G IIe-allm,2 II gllz d”. 
The finiteness of II e-(H-nx2) /I is equivalent to (A.2) by standard 
arguments. I 

Note. It may be shown, as in the proof of Theorem A.8, that (A.2) 
implies (A. 1). 

The situation for hypercontractive semigroups is as follows: Carmona has 
shown [5] (see Theorem A.8) that (A.2) holds for some a > 0 for all hyper- 
contractive Schriidinger semigroups, and (A.l) thus also follows. On the 
other hand, for the hypercontractive semigroups studied in quantum field 
theory (A.l) is not true, so its general status is not clear. This section is 
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devoted to this question. We emphasize that several of the abstract theorems 
below are much easier to prove for Schrodinger semigroups by other 
methods, and many of the proofs are abstractions of those of Carmona [5]. 

Our standing hypotheses throughout this appendix are as follows. We let 
dx be a a-finite measure on the Bore1 space X, and let H > 0 be a selfadjoint 
operator on L*(X) such that ePHt is a contraction semigroup on L”(X) for 
all 1 < p < co. We assume that eeHt is positivity preserving and irreducible 
on L*(X). We assume that the bottom of the spectrum of H consists of an 
eigenvalue E, of multiplicity one and that the corresponding eigenfunction o0 
is a.e. positive. We also assume that e-Ht is a bounded operator from 
L*(X) to L”(X) for all f > 0. This last assumption is not related to intrinsic 
hypercontractivity and is satisfied for practically all Schrodinger semigroups 
[37]. It implies by duality that e-“’ is bounded from L ’ to L * and hence 
from L’ to L*. Thus e-“’ has a bounded integral kernel a,(~, y) such that 
]]at]la is a monotonically decreasing function of t. 

LEMMA A.2. Suppose that f: X -+ R ’ has the property that 

s,= (x:f(x)<n} 

has finite measure for all integers n > 1. Then the form H + f has compact 
resolvent. 

Proof. We write f = f, - f2, where f2 = (n - f)xs, so that 0 < f2 < n 
and f, > n. Then 

-1 
e -Wtf)t = e-Wtfi)t + 

I 
,~(H+f,)(t-s)fie-(Htfl)s ds 

‘0 

+i 
,-(H+f,)(t~slf2,-(H+n(s-u’fie-‘H+”’” du & 

TIUTZ 

where 

T,= (u,s):O<u<s<t and s-u<+ 
I I 

, 

T, = 
I 
(u, s): 0 < u < s < t and s - u > + . 

I 

We see, by the Trotter product formula, that 

Il.fX (H+f)(s-u)SZII: 911 f %x> as-u(x, Y)%(Y)’ h & 

G Il.fX IIas-ull~ 
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Therefore 

Ilf*e- (H+f)(s-u)f211*< r2 IS,1 Il~t,2llm 

if (u, S) E T2, whence 

T ,-(ff+fl)(t-s) 
2 .f2e- (H+f)(s-U)f2e-(H+fl)u duds 

II 2 
< +t2n2 IS,1 Il4I, 

< co. 

It therefore remains to prove that 

+ e-(Htf,)(t--s)f2e-(H+f)(s--u)f2e--(H+f,)u & ds = 0. 
Tl II 

Using the estimate 

Ile- 
Wf$/I < e-“‘, 

we see that this lhs is dominated by 

I J 
t 

lim emnr + e-“‘n ds + e-nct-stu)nz du ds 
n-co 0 I TI 

< lim {eCnf t e-“‘nt + eC”L’2n2t2/2} 
n+m 

=o. I 

We now assume intrinsic hypercontractivity. 

LEMMA A.3. If II e-H*l14.2 < 03 for some t > 0 and f: X+ Rt satisfies 

s e4f(x)(po(x)2 o!x < co 
X 

then (H - t - ‘f) is bounded below. 

Proof By Segal’s lemma 

lie- w--f) 11 < 11 $eeHt I( = /I de-“’ 11. 
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If g E L*(X, ~0(x)2 dx) then 

IW%ll* G Ile’llr Ile-%ll4 
< II 4 II e-8’ll4,2 II gllz 
= c II gll,, 

where c < co by the hypothesis. The boundedness of eCuHP” is equivalent to 
(H - t-If> being bounded below as a quadratic form sum. I 

THEOREM A.4 Assume the standing hypotheses preceding Lemma A.2. 
[f H is intrinsically hypercontractive, then it has compact resolvent on L2. 

Proof: Since e-Ht is bounded from L2 to La, we see that o0 is bounded. 
For n > 1, let 

s,= x:* <.,(x)&k/ 
1 n 

so that {S,} is a partition of X into sets of finite measure. Let (c,) be a 
sequence of positive numbers converging to infinity slowly enough so that if 

f(x)= 2 c”.%;“(x) 
ll=l 

i 
e 4f(x)~o(x)2 dx < CO. 

X 

We deduce that (H + t- ‘f) has compact resolvent and (H - t - ‘f) > - c for 
some finite c, by Lemmas A.2 and A.3. Therefore 

H=f(H+t?f)++(H-t+f) 

and minimax implies that H has compact resolvent. I 

Notes. (1) The conclusion of this theorem is false for the hypercon- 
tractive semigroups appearing in quantum field theory [38]. The reason is 
that the condition that ePH’ has a bounded integral kernel is not then valid. 

(2) The above theorem implies that H has pure point spectrum and 
that there is a gap in the spectrum between E, and the next eigenvalue E, . 
However, it does not give any lower bound to (E, - E,) and consideration of 
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double well Schrijdinger operators proves that no such lower bound can be 
found in terms of the information supplied. 

In our next lemma, we prove a decay property of o, in the abstract 
context. For Schriidinger semigroups, much more powerful results can be 
obtained by using other methods [ 1,6,12]. 

LEMMA A.5 Under the hypotheses of this appendix, tf H has compact 
resolvent on L*(X), then rp, E L” for all 1 < p < 00. 

Proof: Let us denote the operator H on Lp(X) by H,. Since eeHzt is 
compact and ePHJ is bounded for all 1 < p < co, it follows by interpolation 
[25; 3, p. 851 that e- Hpf is compact for all 1 < p < co. Applying the spectral 
theory of compact operators to e -H~t and eAHd simultaneously as in [3], we 
find that H, and HP have the same eigenvalues and eigenvectors. This, 
incidentally, proves the p-invariance of the spectrum of H, (see [34]) under 
the condition that H, has compact resolvent. i 

We now collect our results together into a single theorem, which is 
implicit in the results of Carmona [5] for the case of Schrodinger 
semigroups. 

THEOREM A.6. Suppose that epHt is an irreducible positivity preserving 
semigroup on L’(X) which is a contraction semigroup on Lp(X) for all 
1 < p < CO, and suppose further that eeHt is bounded from Lz to LW for all 
t > 0. If H is intrinsically hypercontractive, then 

tr[eeH’] < co 

for all large enough t > 0. 

Proof Since ePHf is bounded from L2 to L co, the ground state eigen- 
function v)~ is bounded. If we define f: X -+ R by 

then f is bounded below and 

i x 
e4~f~x)tpo(x)’ dx = J ~JI~(x)*~~~ dx = CO 

X 

for 0 < a < d by Theorem A.4 and Lemma A.5. It follows by Lemma A.3 
that for small enough /I > 0 there exists y E R such that 
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We next note that the Golden-Thompson inequality implies that 

= 
i e -fcx’a,(x, x) e -m dx 

X 

< c, 1 
e - *f(X) dx 

X 

=c,<co 

for all t > 0. Therefore tH + 2f has pure point spectrum with eigenvalues ~1, 
satisfying 

z. e-‘n = tr[ePfH-*‘] < co. 

Choosing t = 2/p we have 

2tH = (tH + 2f) + (tH - 2f) 

> (tH + 2f> - ty. 

Therefore the eigenvalues E, of H satisfy 

2tE, 2 in - ty 

and 

tr[eezH’] < ely f e-@n 
n=0 

<co. I 

For the sake of completeness, we finally prove a theorem which states 
roughly that the potential of an intrinsically hypercontractive Schriidinger 
operator must increase at least quadratically at infinity. This theorem may 
be found in Carmona [5], but its complete proof requires information in an 
unpublished letter of 1975 from I. Herbst to L. Gross. It will be clear that 
certain steps in the argument below can be written down abstractly. 

We assume for the rest of the appendix that H = -A + V on L2(iRN), 
where V E L f,, is bounded below. We assume that H is intrinsically hyper- 
contractive with lowest eigenvalue zero and corresponding eigenfunction qo. 
The operator I? is then defined as a Dirichlet form by 
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where 

d/l(x) = cpo(x)’ dx. 

LEMMA A.I. Under the above conditions, e-” is a contraction from L2 
to L4 for large enough t > 0. There exists c > 0 such that I? satisfies the 
logarithmic Sobolev inequality 

i Jfl= Wfld~ < d&f) + llfll: Wf II2 (A.3) 

for all f E L2(lRN, dp). Moreover, 

J x2 dp(x) < co. 
lw 

(A.41 

Proof. Theorem A.4 implies that 0 is an isolated eigenvalue which is of 
multiplicity one by irreducibility. The fact that e-fi-1 is not only bounded 
from L2 to L4 for large t but actually a contraction for sufficiently large t is 
a result of Glimm [ 161. If 0 < ,J < 1 and p = 4/(2 -A) then conplex inter- 
polation implies that 

lle-r7nYp,2 < 1. 

If /If II2 = 1 and fA = e-‘*’ If I and 

h(A) = j, fA(x)4/‘2-A) dx 

then h(0) = 1 and we have that 

Thus 

h(J) < 1 all 0<11<1. 

= logs,+2? f;dp 
0 1 

= I Wfo)f i dp - 2@ If I. If I>. 
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207 If I3 If I) 

provided llfl12 = 1. The last inequality follows from the fact that eeffi is 
positivity preserving [29, p. 2091. The general bound (A.3) is now obtained 
by substituting f/llfllz into this inequality. 

To prove (A.4) we put 

f,(x) =x if IxI<n, 

=n if x>n, 

C-n if x < -n, 

and suppose for contradiction that 

Since Z? is a Dirichlet form, 

;\l (HL, f,) = lim J rpo(x)’ dx = 1, 
n-t* Ixl<rl 

so if g, = Mf, II2 we have 11 g,/l, = 1 and 

lim (Bgg,, g,) = 0. 
n-rcc 

Since the eigenvalue 0 of I? is isolated and of multiplicity one, it follows that 

Now 

I(&, l>l” Q llfnll;’ 1 j If”1 &I’ 

~Ilf,ll;‘j~lfnl*+~) 4 

=++ (2E llf”llY~ 
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Putting E = ]]f, ]I; ’ and letting n + co, we obtain the required 
contradiction. 1 

Remark. In the above, we used Glimm’s theorem that if e-“1 = 1 and 
]]e-“$]]4 < C, ]]f]12 for t large, then C, = 1 for t perhaps even larger. If 4 is 
replaced by co, then this result is false. For suppose Al = 1 and 
I]&]], < j]f]12. Let (g, 1) = 0 and pick f,= 1 + sg. Then Ilf,l12 = 1 + O(E*) 
while max, IIAf,,II, = 1 + l&l ll4ll,, so IlAf llm < Ilf II2 can only happen if 
Af = (1, f )l and never for a semigroup. 

In the following theorem we continue with the conventions written down 
above Lemma A.7. The proof is essentially that of Herbst (unpublished). 

THEOREM A.8. Zf H is an intrinsically hypercontractive Schriidinger 
operator on L’(lF?), then 

H>ax’-/? (A.5) 

for some a > 0 and /3 E IF?. Hence 

Proof. We put 

tr[ePH’] < oo all t > 0. G4.6) 

h,(a) = j ezafi dp, 

where f, is defined as in Lemma A.7. Then 

h;(a) = j 2f i e2”e dp 

and putting g, = eafi into A.3, we obtain 

+4 = j 85, log g, Q 

< c I I vg, I2 4 + Ma) log h,(a) 

= c j I2ag,f,Vf, I2 9 + S,@) log h,(a) 

< 4a2c I f :, g:, dp + $,(a) log h,(a) 

= 2a2ch;(a) + +h,(a) log h,,(a) 

580/59/Z-16 
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If 0 < a < 1/8c we deduce that 

K(a) < + h,(a) log h,(a). 

Solving the associated differential equation and inserting the initial 
conditions h,(O) = 1 and 

h;(O) < b = 2 (x’,u(dx) < co, 

we deduce that 

h,(a) < eba. 

Letting it -+ co it finally follows that 

I e2”“*,u(dx) < eba 

for all 0 < a < 1/8c. The bound (A.5) is now a straightforward application 
of Lemma A.3. From (A.5) we deduce that 

H>&4+v)+:(ax-p) 

>y(-d+x’)-6 

for some y > 0 and 6 > 0. This yields lower bounds on the eigenvalues of H 
which imply (A.6). 4 

APPENDIX B : 
ULTRACONTRACTIVITY AND HARMONIC COMPARISON 

It follows from Theorem 3.1 that intrinsic ultracontractivity is equivalent 
to a bound of the type 

IP~(xI G v+‘rp&) (B-1) 

for all x E X, n > 1, and 1 > 0. Although the use of logarithmic Sobolev 
inequalities allows one to establish intrinsic ultracontractivity and hence 
(B.l) in great generality, one manages to achieve this without knowing the 
precise rate at which the two sides of (B.l) decay. It is natural to ask 
whether one can establish (B.l) by obtaining direct bounds on the two sides, 
and indeed this was the method by which one of us approached the whole 
problem in [9]. A little thought soon convinces one that eigenfunction 
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bounds based on the Agmon metric are not (at present) strong enough to 
enable one to establish (B.l), but that some results should be obtainable by 
use of the subharmonic comparison theorem, as described, for example, in 
[ 121. In this appendix, we apply the method to one test example. The 
computations can be adapted to other central potentials and to certain 
noncentral potentials, but one can also sometimes prove intrinsic ultracon- 
tractivity in the noncentral case by comparison with a suitable central case; 
see Theorem 3.4. 

We now consider the Hamiltonian 

H=-A+(xJ” 

in L2(RN) for 2 < a < co. Let the eigenvalues {E,}F=, be written in 
increasing order, and let the corresponding eigenfunctions {P,,},“=~ be 
normalized by ]]v)~]]~ = 1 and q, > 0. We obtain upper bounds on ]P~] and a 
lower bound on ‘pO by comparing them with the function 

fE(x) = t-d4+(N-11)/2 exp 2 ,.l+a/Z .” 2 ,1-a/2], 

a+2 

where r = Ix]. This function was chosen by an old-fashioned JWKB 
expansion. 

LEMMA B.l. There exist constants y, , y2, y3 such that 

~f,/f, = ra -E + y,r-* + y2Era”-’ + Y3E2rpn 

for all r > 0. 

ProoJ This is a direct computation. If 

f(r) = re4eegcr) 

then 
Af(r) = f”(r) + v f’(r), 

so 

Af/‘= p(jl+ 1) r-’ + 2/3g’r- ’ + (g’)‘- g” - (N- 1)/V” - (N- 1) g’r-l. 

Substituting 



388 

and 

DAVIES AND SIMON 

yields 

Af/f =r*-E+ 
,8@+2-N) E2 -Ea 

r2 +4r*- 2pl2+L. 1 

We now use the subharmonic comparison theorem ([ 121 and references 
there) to obtain a lower bound on rp,. 

LEMMA B.2. There exist positive constants c,, c2, cj such that 

%(X> 2 Cl if Ix(-r<cc3, Q3.2) 

2 c2foW if 1x1 >c,. (B-3) 

ProoJ Putting E = 0 in Lemma B.l we obtain 

where 

W(x) = r@ + y,/r2 

which has to be compared with 

Aq, = (ra - E) qq,. 

There exists c1 > 0 such that 

W(r) > ra -E 

for all r < cj, and then c, > 0 such that 

%(X) 2 c2fdx) 

whenever ]x 1 = c3, by the continuity and strict positivity of qpo. The bound 
(B.3) now follows by the subharmonic comparison theorem. The bound (B.2) 
is a consequence of the continuity and strict positivity of (p,, on 
Ix: Ix/< Cj]. I 

THEOREM B.3. There exist positive constants c, and c5 such that 

Iv,(x>l < c5 ew(c4E?+“2) v&> 
for all x E RN and all n > 1. 
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Proof. If Ix\< cj this is an immediate consequence of the bound 

I (P&l G csEY4 (B.4) 

valid for all x E RN by [ 121. It is therefore sufficient by Lemma B.2 to prove 
that 

I yl,(xl < c, ew(c,E? “*) f&l 

for all 1x1 > cX. This bound is actually valid for all x E RN. 
We start by observing that there is a constant c, such that if E > E, and 

r > c8E11”, then 

lyll r-* + /y2/Er-0’2-1 + Iy31 E’r-= < +E. 

It follows that if n > 1 and r > c~(~E,)“~, then 

IAf2E,lf2E, - Pa - 2E,)I 6% 

so 

ra - 3E, < Af2E,lf2E, < ra - Ena 

We deduce that there exists cg such that if n > 1 and r > cgEAia, then 

0 &Af,,, < Pa -E,)f2En. 

We now treat the cases r > c,Ei/” and r < c,E!/” separately. 
If r > c El/” then it follows from the subharmonic comparison theorem /9*, 

that 

I rp”Pl < lcpn(c9w>l 
fZ ‘f2E,(C9W> * 

Combining (B.4) with the identity 

f2&&‘“> = cd, l/4-(N-l)/20 exp[-c,,E;h+‘/*], 

we deduce that 

(B.5) 
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Now suppose that 0 < r < c,EA’“. Since (pO is a monotonically decreasing 
function of /xl= r, we have 

= C,,&/4++(N-1)/2 exp[c,,&;/“+t’/2] 

= c,, exp[c,,E~‘“+“2]. P.6) 

The theorem follows by combining (B.5) and (B.6). 1 

COROLLARY B.4. For all t > 0 there exists c, such that 

for all x E RN and n > 1. Thus the Schriidinger operator H = -A + Ix la is 
intrinsically ultracontractive for all a > 2. 

Proof: Since a > 2 we have 

c E1iu+‘i2 < E,t 4 n 

for large enough n, depending upon t. We may now apply Theorem 3.1 (i) 
withp= co. 

Note. One can actually deduce from Theorem B.3 that the semigroup 
e --H4’ is ultracontractive for all /? satisfying 

Similar methods to those above can be used to obtain rather sharp upper 
bounds on o,(x) and lower bounds on q,,(x) when 0 < a < 2. We do not 
present them here since they cannot possibly to prove hypercontractivity of 
e -M because of Theorem A.8. 

APPENDIX C: 
THE FORM DOMAIN OF DIRICHLET FORMS 

In Section 4, we proved that if A is the Dirichlet form associated to a 
Schriidinger operator, then D(A) is precisely the set of qr E L’(X, dp) with 
Vrp E L2(X, dp). In the Dirichlet case, we only proved that D(A) is contained 



ULTRACONTRACTIVITY 391 

in the set. Our goal in this appendix is to prove equality of D(A) and this set 
under an additional regularity assumption. 

THEOREM C.l. Let w0 be the ground state eigenfinction of the Dirichlet 
Laplacian H for the bounded region U E RN. Then v0 is a C” bounded 
function. Suppose the boundary XJ of U is regular enough so that x + XJ 
implies v/,,(x) -+ 0. Let L2 stand for L2(U, t&(x) dNx) and let the closed 
quadratic form Q be defined by 

where Dam(Q) = {f E L2: Vf E L2}, V denoting the distributional 
derivative. Then C?(U) is a quadratic form core for Q, so Q is the quadratic 
form of A, the Dirichlet form associated to H. 

Proof We first show that 

is a form core of Q. Let F,: R -+ R be a sequence of C” functions such that 

O<IsI<n=-F,(s)=s, 

n<js~<2n~n<F,(s)~<n+ 1, 

2n<IsI< co=-F,(s)i=n+ 1, 

O<F;(s)< 1 all --oo<s<m. 

If f E Dam(Q), let f, = F,(f ). Then 

Ilfn-fllz-)O as n-+ 0, 

and 

Q(f,-f)=jUlvf-F:(f)of'w:dx 

= uI~-Wf121Vf12v:d~ I 

+O 

by the dominated convergence theorem. 
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We next show that 

q= {fEL,m,,,:VfEL2} 

is a form core of Q. Let G: [0, co) -+ [0, co) be a C” function with 

G(s) = 0 if O<s<l, 

0 < G(s) < 1 if 1 < s < 2, 

G(s) = 1 if 2<s<co, 

and for f E gr, let 

fn = G(w,lf: 

Since v/O is assumed to vanish as x * XJ, we see that f, E Lz,,,, and 
Ilfn - fllz --t 0. Also 

Q<fn -f> = I, I Wwo) Vf + fF’(w,) nvv, - Vfl’ vi dNx 

22 J IWv,)- 1121W2v~~N~ u 

+ 21 Ifl’ lWvo)w,1* lW,,l* dNx. cl 

The first integral vanishes by the dominated convergence theorem. The 
second also vanishes by the dominated convergence theorem once one 
notices that f E L” and 

i lVwo12 dNx = (mh, v/o) < a. 
u 

To show that C:(U) is dense in g2 depends upon a standard mollifier 
argument. 

The final statement of the Lemma depends upon the fact that we have 
proven (Proposition 4.4D) that CF is a form core for A and that A obeys 
(4.5). I 

We conclude by providing some well-known conditions which imply that 
y, vanishes on 3U. Let Px and E, denote probability and expectation for 
Brownian motion starting at t. Recall [26]: 

DEFINITION. Given a path b(s) and U, an open set in R”, we define 
T(b) = inf(s > 0 1 b(s) & U). y E 3U is called regular if and only if 
P,,(T > 0) = 0 (note that 7’(s) is defined with s > 0, nof s > 0). 
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We quote the following results from [26] ((a) is Proposition 23.3 and (b) 
is Proposition 23.4): 

LEMMA C.2. (a) Let y E Xl. If there is an open cone C with vertex y 
so that Cn{xlIx-yl<d}nU=# for some 6>0, then y is a regular 
point of Q. 

(b) If y E XJ is regular and s, E > 0 are given, we can find 6 > 0 so 
thatP,(T>s)<sifIx-yI<6. 

Let H denote the Dirichlet Laplacian for U. 

THEOREM C.3. Let k > v/4 and let g E D(Hk) so g is continuous on U 
(by a Sobolev estimate). Ify E aLJ is regular, then lim,,, g(x) = 0. 

Given this theorem, a compactness argument yields 

COROLLARY C.4. If every point in XJ is regular (e.g., tf U obeys an 
exterior cone condition), then w,,(x) + 0 as x + aU. 

Proof of Theorem C.3. Let f = ($H + l)kg, so f E L2 and 

dx> = ck e-sSk-l(e- (1’2)sHf )(x) ds. 

Now [26, p. 2241, for a.e. s, x, 

W (1’2)sHf )(x) = E,(f(b(s)) so 1 m>s,), 

so for a.e. x E R, 

I g(x)1 < ck jom eessk- ‘EAlf W)I qbI rcbj>sJ ds. 

Next, note that, by the Schwarz inequality, 

E,(lfW))l4b 1 m>s,) < E,(lf Ns))12)1’2UWW > 9” 
< (2ns)-“‘4 Ilf (12 P,(T(b) > S>. 

The next result, initially a.e. and then for all x in a, is 

I g(x)1 < c, ll(H + 2)‘g\l,jom e-‘Sk-l-“‘“P,(T(b) > s)“‘. 

From this inequality and Lemma C.2(b), the theorem follows. 1 
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