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Almost Periodic Schrδdinger Operators
III. The Absolutely Continuous Spectrum in One Dimension
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Abstract. We discuss the absolutely continuous spectrum of H = — d2/dx2

+ V(x) with F almost periodic and its discrete analog (hu)(n) = u(n +1) + u(n — 1)
+ V(ri)u(ri). Especial attention is paid to the set, A, of energies where the
Lyaponov exponent vanishes. This set is known to be the essential support of
the a.c. part of the spectral measure. We prove for a.e. Fin the hull and a.e. E in
A, H and h have continuum eigenfunctions, u9 with \u\ almost periodic. In the
discrete case, we prove that |^4|^4 with equality only if V= const. If k is the
integrated density of states, we prove that on A, 2kdk/dE^π~2 in the
continuum case and that 2πsmπkdk/dE^.l in the discrete case. We also
provide a new proof of the Pastur-Ishii theorem and that the multiplicity of the
absolutely continuous spectrum is 2.

1. Introduction

This paper discusses the theory of one dimensional stochastic Schrodinger
operators and Jacobi matrices, that is H= — d2/d2x+Vω(x) on L2(— oo, oo) and
u^(hu)(n) = u(n+l) + u(n—l)+Vω(n)u(n) on /2(Z), where Vω is a stationary ergodic
process on R or Z. This set includes the highly random case and also the almost
periodic (a.p.) case. As we will explain, our theorems are vacuous in the highly
random case and are only of interest in cases close to the almost periodic case. A
major role will be played by the integrated density of states, k(E\ and the
Lyaponov exponent, y(E\ defined, e.g. in [2] or in [8] [in the latter, the rotation
number a(E)=πk(E) is discussed].

In this paper, our primary goal will be to study the absolutely continuous (a.c.)
spectrum. Much of what we do should be viewed as a development of themes of
Moser [12], Johnson and Moser [8], and most especially Kotani [10] (see Simon
[18] for Kotani theory in the Jacobi matrix case). Virtually all the theorems we
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prove are true under the sole assumption that Vω( ) is ergodic. However, one of
Kotani's results is that if Vω is non-deterministic, the a.c. spectrum is empty so our
theorems are vacuous unless Vω is deterministic, i.e. close to almost periodic.

One of our original motivations was to extend a remarkable inequality of
Moser [12], who proved that for Eespec(H)

for periodic and then, by a limiting argument, suitable limit periodic potentials.
Inequality (1.1) cannot be true for the general stochastic case. For suppose b(t) is
two sided Brownian motion on a compact Riemannian manifold and
V(x)=f(b(x)). Take /to be a continuous function whose minimum value is — 1 but
so that the measure of the set /, where /(w)<0 is very small in the normalized
measure on the manifold. Then α(0) will be very small. But [— 1,0] C spec (H\ so if
(1.1) holds, it would imply that α(0)^ 1. There are also strongly coupled a.p. cases
where (1.1) can be seen to fail. Our first realization is that (1.1) shouldn't be
required to hold on all of spec(#) but only on a smaller set which equals spec(H) in
the periodic case.

Given any absolutely continuous measure, dμa c it is mutually a.c. with respect
to a measure of the form χAdx, where A is uniquely determined up to sets of
measure zero. A is called the essential or minimal support of dμa c . Given any
measure, dμ, the essential support, A, of its absolutely continuous part is
determined by the following pair of properties :

(1) There is a set of Lebesgue measure zero, B, so that μ(R\(AuB)) = 0.
(2) If μ(C) = 0, then ,4nC has Lebesgue measure zero.
In the context of multidimensional stochastic Schrodinger operators, it is a

theorem of Kunz and Souillard [11] (see also Kirsch and Martinelli [9]) that the
a.c.-spectrum is a.e. constant (a.e. in ω). We expect that in that generality, it is even
true that the essential support of the a.c. part of the spectral measure is constant,
but we don't know how to prove it. In one dimension, however, one has the
following beautiful theorem of Kotani [10] which uses the Lyaponov exponent,
y(E).

Theorem 1.1 ([10]. For a.e. ω, the support of the a.c. part of the spectral measure is
equal to {E\γ(E) = 0}.

Remarks. 1. This is only implicit in Kotani [10]. It follows from Theorem 4.1 of his
paper.

2. Kotani deals with the Schrodinger case. The extension of his ideas to the
Jacobi case can be found in Simon [18].

In interpreting (1.1), we begin by noting that since α is a monotone function, by
a well-known theorem in measure theory (see e.g. Saks [15]), the symmetrized
derivative lim (2s) " ! [α(£ + ε) — α(E — ε)] exists for a.e. E. We denote it by doc/dE, The

extension of (1.1) that we will prove in this paper is

Theorem 1.2. In the Schrodinger case, for a.e. E in the set where γ(E) = Q, we have
that da2(E)/dE^l.
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As we have already noted, another theorem of Kotani [10] says that if
{E\y(E) = Q} has positive measure, then Fis deterministic, so our Theorem 1.2 is
only interesting in case V is deterministic, e.g. in the almost periodic case. An

immediate consequence of Theorem 1.2 and the inequality g(b) — g(a)^ J-^-rfx for
g monotone is : a x

Corollary 1.3. Let A = {E\y(E) = 0}. Then for a<b:

where \ \ is Lebesgue measure.

We warn the reader that, in principle, | σa c (H)n(α, b)\ can be much larger than

If Theorem 1.2 and Corollary 1.3 were true in the Jacobi case (they are, as we
will see), they are especially interesting since in that case we can take 6-»oo and
α— > — oo and obtain an absolute bound |^4|^π2. However, in the Jacobi case,
2ada/dE ^ 1 cannot be optimal. For, if we replace V by — V, the resulting h is
unitarily equivalent to the negative of the original h [under the unitary map
w(n)->(— l)nu(n\ which flips the sine of ft0]. Thus, the new α, call it α, is related to
the old α by α(£) = π — α( — E), so if 2ada/dE^ΐ and the same for α, we see that
F(a)doί/dE^l9 where

F(a) = 2a if a^

= 2π — 2α if α^π/2.

It is unreasonable that this F should be optimal. A hint of what is the correct F is
that in the Schrδdinger case 2ada/dE^l has equality when F=0. This suggests the
correct function should be the one that gives equality in the free case. This led us to
find the following :

Theorem 1.4. In the Jacobi case, for a.e. E in the set where γ(E) = 0, we have that

As before, this implies

Corollary 1.5. Let A = {E\γ(E) = Q}. Then for a<b:

2cosα(α) - 2cosα(fr) ̂  \An(a9 b)\ . (1.2)

In particular, \A\^4.

This inequality is new and, we feel, striking, even in the case where Fis periodic
(although in that case, one can use perturbation theory to check it for small and
large coupling). In general, it says the size of the set of energies where there are
extended states shrinks. It fits in well with the idea that in the strong coupling
almost periodic case, one wants to have some spectrum that isn't a.c. (but doesn't
prove it).

We will prove Theorems 1.2 and 1.4 as "boundary values" of inequalities in the
upper half plane. It is a basic fact [8] (essentially a version of the Thouless formula
[6, 19] - see [2]) that β(E)= — γ(E) + ia(E) is the boundary value of an analytic
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function [which we also call β(EJ] in the upper half plane; y=— Reβ is the
Lyaponov exponent in that half plane. Moreover, in Im£>0:

)^π (Jacobi case) . (1.3)

The relevant inequalities are :

Theorem 1.6 (Kotani [10]). In the Schrδdinger case,

2α(E)y(£)^Im£. (1.4)

Theorem 1.7. In the Jacobi case

2sinα(£)sinhy(£)^Im£. (1.5)

Intuitively, the idea is that if y(E0) = 0, then these inequalities are non-trivial for
E0 + ίε when ε is small and yield an inequality involving dγ(E0 + iy)/dy. By Cauchy-
Riemann equations, this derivative should be da/dE.

In Sect. 2, we show that Theorems 1.6 and 1.7 imply Theorems 1.2 and 1.4. In
Sect. 3, we give a simple proof of Theorem 1.6 which, like Kotani's original proof
[10], uses Jensen's inequality (in the form of the Schwarz inequality), albeit in a
different way. We don't see how to use Jensen's inequality to get Theorem 1.7. We
give a completely different proof of Theorem 1.7 in Sect. 4 which uses nothing but
the Thouless formula. The extension of this proof to yield an alternate proof of
Theorem 1.6 requires a new result on the asymtotics of k(E) at high energy. This
result, of interest even in the random case, appears in an appendix. In Sect. 5 we
show that in many cases, equality in the various inequalities implies that V is a
constant. For example, in Corollary 1.5, |A| = 4 implies that Fis constant.

After presenting this set of ideas, we turn to studying eigenfunctions of
— u"+Vu = Eu for E on thhe real axis. In [10], Kotani only proved that the
essential support of the a.c. part of the spectral measure isn't any smaller than
{E\y(E) = 0}. That it isn't any larger is an older result of Pastur [13] and Ishii [7].
In Sect. 6 we study eigenfunctions for those E real with γ(E) > 0 and prove the
Pastur-Ishii theorem by ideas close to those Kotani used for the other half of the
theorem. Unlike Pastur, we make no use of the existence of eigenfunction
expansions. The main tool is to study the boundary values as ε|0 of the
eigenfunctions for E + iε which are L2 at +00 or at — oo. Using these same
boundary values, we study eigenfunctions on the set where γ(E) = 0 in Sect. 7. We
prove the important result that if case Fis almost periodic, these eigenfunctions at
least have an absolute value that is almost periodic. We have learned that Kotani
found this result some months before us, and plans to have it appear in the final
version of [10]. In Sect. 8, we study the generalized eigenfunctions for energies in
the spectrum where y(E)>0. In Sect. 9, we prove the a.c. spectrum has
multiplicity 2.

Throughout, we have an underlying probability measure space (Ω, μ) and a one
parameter family Ty (yεR or yeZ depending on whether we are in the
Schrodinger or Jacobi case) of measure preserving transformations which are
ergodic and so that Vω(y) = f(T yco) for some function / on ω.

Unless we specify otherwise, the statement a.e. when applied to subsets of R
denotes "with respect to Lebesgue measure" "a.e." when applied to Ω means with
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respect to μ. We would like to thank Tom Wolff for supplying us with the proof in
Appendix B.

2. Reduction of Theorems 1.2 and 1.4 to Inequalities for Complex E

Our goal in this section is to prove Theorems 1.2 and 1.4, assuming Theorems 1.6
and 1.7. We will use the following, which is a consequence of the Thouless formula
[2], or alternatively a direct result of Johnson and Moser [8] :

Theorem 2.1. dβ/dE also has a positive imaginary part in the region ImE > 0. In fact,
in that region

dβ = f dk(Ef)

As a consequence, we have

Proposition 2.2. For almost all E

dy da
lim — (EQ + iε) = — (E0). (2.2)
ε|0 0£ dE

For almost all E0 with y(E0) = 0,

£(*o) (2-3)
ε j O

Proof. Equation (2.3) follows from (2.2) and the mean value theorem, so we
dy

only need (2.2). By the Cauchy-Riemann equations, for β= ~y + /a, —-(E0 + n:}

da
= — (E0 + ίε), so (2.2) is equivalent to

(J L-J

We need some standard facts in measure theory [15] : if dμ is any measure with
$(l + \x\)~ίdμ(x)<ao9 then

(a) F(x)= l imlmf exists for a.e. x.
ε i o J y — x — zε

(b) dμac =π~1F(x)dx, where dμac is the absolutely continuous part of μ.
X

(c) G(x)= J dμ(x) has a classical derivative at a.e. x.
— oo

(d) dμac=G'(x)dx.
Looking at (2.1) and recalling that α = πfc, we see that (2.4) follows from (a)-(d)

above. Π

Proof of Theorems 1.2 and 1Λ (assuming Theorems 1.6 and 1.7).
i0 + zε)^ε and y(E0) = 0 implies 2ada/dE(E0) ^ 1 for a.e. £0 by
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Proposition 2.2. Similarly, since lim sinh γ(E0 + iε)/ε = lim γ(E0 + iε)/ε if y(£0) = 0,
ε|0 ε|0

we see that 2 sin α(E0 + iε) sinh γ(E0 + ίε) ̂  ε implies that 2 sin adtt/dE(E0) ^ 1. Π

3. Complex Energy Inequality: The Schrodinger Case

Kotani proved (1.4) in [10] using Jensen's inequality [in the form E(ef)
^exp (£(/))] on a suitable integral. Here is an alternate version: In the
Schrodinger case Kotani introduces a function h + (ω,E) defined to be w'+(0)/w+(0),

oo

where u+ solves -u"+ + Vωu+=Eu+ with J \u+\2dx<co and h+ is Herglotz. For
Im£>0, he proves: °

Theorem 3.1.

E(l/Imh + ) = 2γ(E)/ImE. (3.1)

Johnson and Moser [8] prove for Im£>0.

Theorem 3.2.

E(Imh + ) = <x,(E). (3.2)

Given these results, we have

Proof of Theorem 1.6. By the Schwarz inequality

Now use (3.1) and (3.2). Π

For the Jacobi case, the analogs of (3.1) and (3.2) are written in terms of the
function m + (ω,E)= — w + (l)/M + (0), where u+(n) solves u + (n+l) + u + (n—l)

CO

+ Vω(n)u+(n) = Eu+(n) and £> + MI2 < oo . They say [18]:
i

(3.3)

(3.4)

We do not see to obtain Theorem 1.4 from these relations and Jensen's inequality,
so we turn to a different proof in the next section.

4. Harmonic Function Proof

In this section we will prove Theorem 1.7 for bounded potentials. The idea will be
to obtain (1.5) by noting that both sides of the inequality are harmonic functions,
so we need only prove the inequality near infinity and on the real axis. Near the
real axis, it is trivial and near infinity we will have asymptotic equality. To be more
explicit, let

F(E) =-2 cosh (β(E)) =-2 cosh (- y (£) + iα(E)).
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Then (1.5) is equivalent to:

ImF(E)^lmE. (4.1)

Theorem 4.1. Consider the Jacobi case. Suppose

J Edk(E) = Exp(F(0)) = 0 . (4.2)

Then

F(E) = E + 0(\EΓ1) (4.3)

uniformly as |E|-»oo in the upper half-plane.

Proof. The Thouless formula says that

β(E)=-ίln(E'-E)dk(E'}, (4.4)

where the branch of In is taken with ln(— 1)= —in and ln(z) continuous in the
region Imz^O. By (4.2) and (4.4)

β(E)=-ln(-E) + 0(l/\E\2).

Since \ex-ey\^ x-);|[M + |ey|]^|ex|(e + l)|x-j;| if |x-y|^l, we see that

and so

and thus (4.2) follows. Π

Proof of Theorem 1.7. Fix ε>0 and let //,.(£) = [ImE -/;]. Let DRi = [E \E\<R.
Im£>β}. Then we claim that for all sufficiently large R

lmF(E)^Hε(E) if EεdDRε. (4.5)

For, letting E0 = Exp(7(0)), (4.3) becomes

so lmF(E) = lmE + O(\E\~1). This yields (4.5) on the segment of dDRε with \E\ = R
so long as R is large. On the segment with Im£ = ε, Hε(E) = 0^lmF(E)
= 2sinasinhy, since αe[0,π], y^O.

This verifies (4.5). Since both sides are harmonic, the inequality holds inside
DR ε and thus on (J DR ε = {E|Im£>e}. Now take ε^O. One obtains (4.1) and

R large

so (1.5). D

One can ask about whether Theorem 1.6 also has a harmonic function proof.
We only see how to do this with a mild regularity condition on V. The analog of
(4.4) is

" ~ E ' 9 (4.6)
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where fc0 is the free density of states, i.e. kQ(E') = π 1 J/max(0,E'). To see (4.6), we
start with the following formula from [2] :

=1/^E- lim f In (£'-
R^co -oo

and integrate by parts using the fact [2] that (k-k0)(E') = O((E'Γί/2).
Alternatively (4.6) is proven in Kotani [10]. The analog of Theorem 4.1 which is
required is

Theorem 4.2. Consider the Schrδdinger case. Suppose that Exp(F(0)) = 0,
Exp(|F(0)|2)<oo and Exp(|F(x)- F(0)|) = o(l/|lnx|) as x->0, G(E)= -β(E)2. Then
as |£|->oo

uniformly in each region lmE>ε.

Proof. A new bound on the high energy behavior of k which we prove in
Appendix A says that under the above hypotheses k(E') — k0(Ef) = o((E')~l/2

(InlE'l)"1), so that by an elementary estimate in the region Im£>ε:

and thus

Given this, we obtain an alternate proof of Theorem 1.6, but only with the
weak regularity condition Exp(|F(x) — F(0)|) = 0(l/|lnx|). Of course, the trivial
proof in Sect. 3 doesn't require this.

5. Conditions for F= const

In this section, we will prove that unless V equals a constant, most inequalities in
Sect. 1 are strict, e.g. (1.4) and (1.5) are strict at all E with Im£>0 and at almost
every E with γ(E) = Q, we have that da2/dE>l in the Schrόdinger case,
and 2smada/dE>l in the Jacobi case. In particular, in the Jacobi case
|{E|y(E) = 0}|<4 if Fφconst. In his paper, Kotani [10] proves related theorems
which imply that V= const, and his work motivated this section.

We begin by proving that if β(E) is the free one, then F^O. We note that since k
is the boundary value of Im/?, k is the free one i f/? is the free one. The converse of
this is also true; it follows from (4.4) and (4.6).

Proposition 5.1. Consider the Jacobi case. If k is the free one, then F=0.

Proof. We have that

Exp I(δθ9 H2δQ}-\ = J E2dk(E) = J E2dk0(E) = (<50, H*δ0) .

But (δ0^
2ί0)=ιι^oiι2=(^^o)+ιno)i2, so

Exp(|F(0)|2) = 0.
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Thus 7(0) = 0 a.e. and so by stationary V= 0. Π

There is a similar argument in the Schrodinger case [using (H + a)~1 as α-> oo]
but it requires some regularity on V. Here is an argument that requires nothing:

Proposition 5.2. Consider the Schrodinger case. Suppose that β(E)= ]/ — E. Then
F=0.

Proof. Fix E0 in the upper half-plane. Then 2y(£0)α(£0) = — Im/?(E0)
2 = Im£0, so

by the proof in Sect. 3 (equality in Schwarz), lmh+ is a.e. constant and that

constant must be E(Im/z + ) = Im(]/ — E0). Thus, for a.e. V, the function
00

r(x) = tt'+(x)/w + (x), where M + solves —u"+ + Vu+=E0u with { |w+ |2dx, obeys
o

Imr(x) = Im(]/— £0) for a.e. x and then by continuity for all x. Now r obeys the
Ricatti equation

r' = (V(x)-E0)-r2.

Since Imr' = 0, we see that

Im(r2)=-E0.

It follows that Rer(x) = ± Re(— ]/— E0), so, by continuity, the same sign works at
all x. Thus r' = 0 so Vω(x) is constant. By ergodicity, the constant is ω independent.
By the value of Re/?(E0), the constant is 0. Π

Actually, the above only used β(E0) = ]/ — E0 at a single E0 in the upper half-
plane. This is not surprising since the next result says that a weaker fact implies

that

Theorem 5.3. // equality holds in (1.4) (respectively (1.5)) at a single point in the
upper half-plane, then V= const.

Proof. Both sides of the inequality are harmonic functions, indeed Im( — β2)^.
[respectively Im( — 2coshβ)^Im£]. Hence equality at one point implies equality
at all points, and then by analyticity we see that β2=—(E — E0) [respectively
cosh/?= —(E — EQ)] for a real £0. Hence, replacing Fby V— E0, we see that the
β(E + E0) is the free β and thus, by the last two propositions, V= E0 a.e. Q

Our final circle of results concerns when equality holds on a set of positive
measure on the real axis. We will need the following result which Tom Wolff
proved for us we give his proof in Appendix B.

Theorem 5.4. Let G be a function analytic in the upper half-plane with a derivative
dG/dz which is Herglotz. Then G(z) has boundary values on the real axis G(x + zΌ) for
all x and for almost all x0 in the set where Re G(x + zΌ) = 0, we have that

AC^
lim Re — — (x0 + is) = 0 .
ε i o dz

Of course, this theorem is only interesting if Re G(E + zΌ) = 0 on a set of positive
Lebesgue measure.
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Theorem 5.5. Consider the Schrδdinger case. If there is a subset, S in R, of positive
Lebesgue measure on which γ(E) = Q and d%2/dE = l, then V is constant.

Proof. By the last theorem and the fact that dβ/dE is Herglotz, we see that
dy

lim — (£0 + z'ε) = 0 for a.e. £0 in S. By the proof of Proposition 2.2,
ε|0 uE

for a.e. £0 in S. Thus on S, dβ/dE(EQ + ity is a.e.0ε i o oE dE
ida/dE(E0). Obviously β(E0 + iϋ) is zα(£0). Thus G(E) = 2βdβ/dE has a boundary

value which is — 1 by hypothesis. It follows that the Herglotz function ]/G(£) has
a boundary value i on almost all of S and so on a set of positive measure. Since
boundary values of Herglotz functions on sets of positive measure uniquely

determine the function |/G = i and so dβ2/dE= — I which yields β= ]/ — (£ — £0).
As above, V is a constant. Π

Theorem 5.6. Consider the Jacobi case. If there is a subset, S in R, of positive
Lebesgue measure on which y(E) = 0 and 2sinαί/α/d£=l, then Vis constant.

Proof. As in the last theorem, dβ/dE(E0 + iQ) is ida/dE(E0) for a.e. E0eS. Similarly
the Herglotz function sinh (/?(£)) has boundary values zsinα. The above argument
applied to G(E) = 2sinhβdβ/dE implies that d/dE(2coshβ)= - 1. This implies that
V is a constant. Π

With this last theorem, we can improve Corollary 1.5:

Theorem 5.7. In the Jacobi case, |{E| y(E) = 0}| ^4 with equality if and only if Vis a
constant.

6. A New Proof of the Pastur-Ishii Theorem

Pastur [13] and Ishii [7] proved that on the set where y(£)>0 there is no
absolutely continuous spectrum. Kotani [10] used their result for one half of his
theorem that {E\y(E} = Q} is the essential support of the absolutely continuous
spectrum. In this section we will give a proof of the Pastur-Ishii theorem using the
same philosophy (and even the same equality) that Kotani used for his half of his
theorem. Our proof is related to that of Ishii.

Let h + (ω,E) be the function defined in Sect. 3 for Im£>0. Then [10]

for a positive measure dμ+. Fix £0 real. From this representation, we see that

ϊ (6.1)

is monotone decreasing in ε, so

S + (ω, £0) = lim lmh + (ω, £0 + iε)/ε
ε|0
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exists in [0, oo]. Applying the monotone convergence theorem to Kotani's relation
(3.1), we see that

E(l/S+(ω9EQ)) = 2y(E0). (6.2)

This implies that S+ is a.e. infinite when γ(E0) is 0. What we will show is that S+ is
a.e. finite when y(E0)>0. Parenthetically, we note that if α(E0)>0, then

E(S + (ω, E0)) - lim E(Im h + (ω, E0 + iε

= limα(E0 + iε)/ε = oo

so, even if S+ is a.e. finite it is unbounded and non-L1.
Below we will prove that

Theorem 6.1 (Continuous Case). Ifγ(E)>0, then S+ is a.e. finite.

Assuming this, we have

Theorem 6.2 (Pastur-Ishii Theorem). Let Pa

ω

c be the spectral measure class of Hω.
Then for a.e. ω

Proof (Continuous Case). Fix E0 with y(E0)>0. By Theorem 6.1, for a.e. ω, S< oo
so Im/z + (ω,.E0 + zΌ) = 0. Similarly, ImΛ_(ω,E0-HO) = 0. For a.e. pair (ω,£0),
h++h_ has a non-zero limit. Iϊh++h_ has a non-zero limit and lmh+ and lmh_
have a zero limit, then Im(— l/h+ + fc_)(ω,E0 + zΌ) = 0. Thus for a.e. (ω,E) with
y(E)>0, we have that Im((-l/(fc+ +ft_))(ω,E + ΐO)) = 0. Since this is the Green's
function, we conclude that P^ c ({E|y(£)>0}) = 0. Π

To prove Theorem 6.1, we define, following Kotani [10], for Im£>0, the
function /+(ω,£) to be the solution of -f" + (V-E)f=Q with/+(0)=l and/;(0)
= h + (ω,E) so /is L2 at oo.

00

Lemma 6.3 [ = Eq.(1.7) of Kotani]. j \f+(x,ω,E)\2dx
o

Proof Let _ _

Then dw/dx = 2ilmE\f+(x)\2 and w(x)->0 ar oo with w(0) = — 2ilmh + (ω,E) so the
equality follows. Π

Since /+ is the unique solution L2 at +00 with value 1 at x = 0, we see that

f+ Cx, Tyω, E)=f+ (x + y, ω, E)/f+ (y, ω, E), (6.3)

from which we see by the lemma that for y > 0:

i7ϊ y
(6.4)ImE + v,-,-, ^

Next we want to note:

Proposition 6.4. Suppose that S+(ω,E0)< oo. Then h + (ω,E0 + iε) has a finite limit.



400 P. Deift and B. Simon

Proof. By (6.1), if S+(ω,£0)< oo, then

ίπ'(E - ^

Since J(|E'| + l)dμ+(E',ω)<ao also, by the dominated convergence theorem, h +

has a finite limit. Π

Proof of Theorem 6.i. By (6.2), S+(ω,E0)< oo is finite on a set of positive measure,
so by the ergodic theorem there exist for a.e. ω, j;0's with S+(Tyoω,E0)< oo (indeed
a set of y0's with positive density). We will show that if S+(7^oω,E0)<oo, then
S + (Tyω, EQ) < oo for a.e. y, in which case by the ergodic theorem again S+ < oo a.e.
By changing the meaning of ω, we can suppose y0 = 0. By Proposition 6.4,
h + (ω, EQ + is) has a finite limit, so /+ (x, ω, E0 + z'ε) has a finite limit /+ (x, ω, £0 + zΌ)
for all x. This /+ solves the Schrodinger equation, so its set of zeros has measure
zero. Equation (6.4) shows that if f+(y, ω,E0 + zΌ)Φθ and S+(ω,E0)<ao, then
S + (T,ω,E0)<co; so we have that S + (Tyω,E0)<co for a.e. y. Π

The above proof has to be slightly modified in the discrete case. The zeros of/+

no longer have measure zero since the measure on Z is discrete. Define S+ now as
the limit of Imm+/Im£. We replace Theorem 6.1 with

Theorem 6.5 (Discrete Case). Let y(E0) > 0. Then for a.e. ω one of the following is
true :

(a) S+(co, EQ) < oo, Imm+(ω, £0 + zΌ) = 0 and m+(ω, EQ + zΌ) has a finite limit.
(b) S+(ω, E0)= oo, Imm+(ω, E0 + zΌ)= oo β^J ί/iβrβ zs α non-zero solution, u, of

the Schrodinger equation which is /2 at +00 αnd wz'ί/z u(0) = 0.

Proof. (6.2) has to be replaced by

which follows from Simon's formula (3.3). As above, for a.e. ω, there exist some
ft<0, with S+(T~nω, E0)<oo. Using this n, we find a solution
/+(w + n, T~nω,EQ) = u(m) of the Schrodinger equation for Fω which is ?f2 at + oo.
If w(0)φO, then using the analog of (6.4), we see that S+(ω,E0)< oo from which
alternative (a) follows by Proposition 6.4. If u(0) = 0, then the half-line operator has
a Dirichlet eigenvalue, so Imm+(ω, £0 + z'O) = oo so, a fortiori S+(ω, E0) = oo. This
verifies alternative (b). Π

With Theorem 6.5 replacing Theorem 6.1, the proof of the Pastur-Ishii theorem
goes through in the discrete case. If Imm+ = oo, then m + +m_->oo, so
Im(— l/m+ +m_)(ω, J£0 + zΌ) = 0. Similarly this is true if Imm_ = oo. Theorem 6.5
says that for a.e. ω, either Imm+ — oo or Imm_ = oo or Im(m+ +m_) = 0. In the
latter case, the argument in Theorem 6.2 shows that for a.e. ω,£,
Im(— l/m+ +m_)(ω,E0 + zΌ) = 0. This proves Theorem 6.2 in the discrete case.

We suspect that alternative (b) of Theorem 6.5 always occurs on a set of
measure zero, but we don't need to know that.
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7. Continuum Eigenfunctions on the A.C. Spectrum

In this section, we will prove a basic result which we learned Kotani proved some
months before us.

Theorem 71. For a.e. pairs ( ω , E 0 ) e Ω x {E\y(E) = Q}, there exist linearly inde-
pendent eigenfunctions u±(x,ω9E0) of — u" + (Vω — E0)u = Q and for a.e. E0 in
{E\y(E) = 0} a function H(ω,E0) on Ω,

(i) u+=ΰ_,
I R

(ii) lim— J |t/±(x,ω,E0)|2<ixe(0, oo),
R* co Z,JΛ. — R

(iii) J|H(ω,E0)|2dμ(ω)<oo,
Ω

We have not been able to control the phase of u± but we conjecture that
M+(X, ω, E0)e+ιax=U±(Txω,E()) for a complex valued function on Ω.

Conditions (iii) and (iv) say that if case Fis almost periodic, \u+\ are iΛalmost
periodic with the same frequency module as V. Our conjecture would imply that on
the set where y(E) = 0, there are Bloch waves with quasi-momentum exactly equal
to α. For this reason, we regard the proof or disproof of our conjecture as a
significant open problem. It would have interesting consequences; e.g. by Aubry
duality and Gordon's theorem [5,17] one would obtain that in the almost
Mathieu equation with Liouville frequency, there is only singular continuous
spectrum also for coupling λ^2 (this is known of λ>2 [2]).

We remark that if the solution u+ is written u + (x) = r(x)eiί)(x), then 0 will obey
θ = l/r2 and we will see that Exp(l/r2) = α. Thus our conjecture that θ — ax is
almost periodic with the same frequency module is seen to be related to a small
divisor problem. In the periodic case, there is no problem and we obtain a rather
involved proof of the existence of Bloch waves for the periodic case. We recall that
for certain almost periodic potentials, Dinaburg and Sinai [4] have constructed
Bloch waves: If our conjecture were proven, the essence of their result would be
that {E\y(E} = 0} had large measure for small coupling or large energy.

As the proof below shows, u± will be the /+ of Kotani [10] but normalized
with the normalization preferred by Moser [12].

Proof of Theorem 7.1. For a.e. pairs (ω, E0\ h±(ω,E0 + iε) have finite limits.
Moreover, by Kotani's argument [10], Im/z±(ω,£0)>0 for a.e. pairs. I f h ± ( ω , E Q )
are finite, we can form the limits /±(x, ω,£0) and by the limit of (6.3)

9 E 0 ) 9 (7.1)

where c+ are functions of y,ω ana E0 but not of x. If also lmh± φO, define

u±(x,ω,E0)=f±(x,ω9E0)/]/Imh±(ω9EQ). (7.2)

Since the Wronskian of/+ and /+ at 0 is +2/Im/z ± , we see that

M+M ± — u'+ΰ± — +2f . (7.3)
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While (7.3) is proven initially at 0, it holds at all x since ΰ+ also solves the
Schrodinger equation (this is where E0 real enters). Since (7.1) holds and (7.3) holds
at any point for both u+(x, ω,£0) and w + ( , Tyω, E0), we conclude that the
constant relating M + ( ,ω,£0) and w+( , Tyω,E) must have magnitude 1, i.e.

Since /+(0, ω, £0) = 1, we conclude that

|« + (*. ω, £0)| = [ImM7>, £0)] ~ 1/2 , (7.4a)

proving (iv) with

H(ω, E) = [Im/z + (ω, £0)] " 1/2 . (7.4b)

(iii) then follows from Kotani's relation

E(l/Imh + (ω, E0)) ^ lim 2y(E0 + iε)/ε . (7.5)
εj.0

(ii) is then a consequence of the ergodic theorem, indeed

limi ί \u + (x,ω,E0)\2 = Exp(ί/lmh + (ω,EQ)). (7.6)
R-+CC λί\ _R

Finally, (i) follows if we note that

t/±(0,ω,£0)-l/[Im/z±(ω,£0)]1/2,

and then use Kotani's relation [10], that for a.e. (ω,E0) in Ωx {E\y(E) = Q}, we
have that _

h_(ω,E0)=-h + (ω,E0). D

While we give the above proof in the Schrodinger case, it extends without
essential change to the Jacobi case if we replace Kotani's work by Simon [18].
Since m± is defined to be — u±(± l)/w±(0) in the complex plane, we have this
relation in the limit. Then (Eq. (2.6) in [18])

and u+ =M_ requires

which is exactly (3.6) and (3.7) of [18]. The above proof shows the significance of
Kotani's relation h_ = — h + . It is an expression of the fact that the solutions u+ are
complex conjugates of each other, which as we will explain, we believe is an
expression of the fact that almost periodic potentials are reflectionless.

Inequality (7.5) and our argument in Sect. 2 imply that

lim ^ ί \u+(x,ω,E0)\2dx^2~(E0). (7.7)
-
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Moreover, since ΰ+ and u+ have Wronskian — 2z, we see that if u+(x, ω, E)
= r(x,ω,E)eίθ(x>ω>E\ then r2dθ/dx = l, so

lim ^$\u+(x,ω,dE0)Γ2dx = a(E0). (7.8)
R-+ oo ιγ 0

These two relations and the Schwarz inequality yield a proof that 2α — ̂ 1;
uE

indeed, this is just the analog of Moser's proof in the periodic case [12]. The astute
reader will see that this proof is not really any different from the one in Sects. 2
and 3.

In the discrete case, one has the analog of (7.7), viz

1 tf-l fa

lim - Σ KO>,£0)|2^2 — (E0). (7.7')
N-»oo IM o ttU

It is an interesting open question to see if the proper analog of (7.8) holds, viz
whether

lim 1 Σ \u + (j,ω,E0)\-2 = E(Imh+(ω,E0))
N^co TV o

is smaller than sinα.
We note a rather striking formula implicit in the above construction :

5ReΛ + (Tyω,£0)dj;=^ln[Imfe + (ω)]-^ln[ImΛ + (Txω)]. (7.8')
o

This formula just says

We believe that (except perhaps for sets of measure zero with respect to both
Lebesgue and spectral measures) there are only eigenfunctions with

1 R

lim— j \u+\2dx>Q if y(E) = Q. Specifically, we expect (but cannot prove) that for
R o

a.e. E (with respect to the spectral measure) in the singular spectrum there are
1 R

solutions with lim — J \u(x)\2dx = 0. Such a result would imply that the
R->00 2R -jR

singular spectrum has multiplicity 1.
Using the differential equation and assuming the boundedness of V9 it is easy to

see that

and from this one sees that

lim |xΓ1 / 2K(x,ω,£0)|<GQ,
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and in the almost periodic case

lim|χ|-1'2|«+(χ,ω,£0)|=0.

This mildly improves the \x\112 + ε bound which is automatic a.e. from eigenfunction
expansions (see e.g. [16]).

The existence of two linearly independent polynomially bounded eigenfunc-
tions suggests that the a.c. spectrum has multiplicity 2 and this could probably be
proven directly from these solutions. However, since one easy direct proof exists
which we give in the next section, we don't pursue this here.

In [3], Davies and Simon show that for any bounded potential, one can find
four spaces ffljrr so that

the absolutely continuous space for H, ana so that

r,tlim ||χr,e-ωW=θL
» ± oo

where χr(/) is the characteristic function of the right (left) half line. They call H
reflectionless if J^~ =^fr

+, i.e. if states which are on the left in the distant past are
on the right in the distant future. We believe that almost periodic potentials are
reflectionless and that this is connected with Kotani's relation h+ = — h_. For the
fact that u+ is a boundary value from Im£>0 of functions decaying at + oo
suggests that J#^~ is the "span" of the functions u + , and similarly j^r~ is the span of
the functions u_. But time reversal implies that (see [3]) J^+ =^~, so u+ =M_
would be an expression of the reflectionless nature of almost periodic
Hamiltonians. Of course, this is only a vision without any proofs yet. In the
periodic case, where one can easily identify J^^r in terms of eigenfunctions [3], one
can check that this vision is correct. The periodic case will differ in one way from
the almost periodic case: Using stationary phase, one finds a dense set in ^~ in
the periodic case for which φ decays rapidly in x and for which || χre~ltH φ\\ decays
faster than any power of ί. The occurrence of only recurrent spectrum in the a.p.
case [1] will not allow that.

8. The Singular Support

We have seen that {E\y(E) = 0} is the a.e. ω common essential support of the a.c.
part of the spectral measure. Here for each ω, we want to define a natural set, Sω,
in R which supports the singular part of the spectral measure and which is intrinsic
to it. Basic to our definition is the theorem of de Vallee Poussin (see Saks [15]):

Theorem 8.1. The singular part of any measure μ is supported on the set of E where

Γ τ rdμ(E')
hmlmf V p . -QQ.ε o E —E—ιε

A fortiori, it is supported on the set where lim... = oo (and it is quite a bit easier
to prove this weaker result). This motivates
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Definition (Continuous Case). Let Gω(x,y;E) be the integral kernel of (Hω — E)~l.
Then Sω is the set of E0 in R for which

Πm Im [GJO, 0 E0 + iε)] + Im - Gω(0, 0 E0 + ίε) = oo .

(Discrete Case). Let Gω(n, m E) be the integral kernel of (Hω — E)'1. Then <5ω is
the set of £0 in R for which

fiS{Im[GJO,0;E0 +
ε J O

Our goal in this section is to prove the following pair of theorems, and to relate
βω to h± and to solutions like f±.

Theorem 8.2. 6ω is translation invariant, i.e. SΓ ω = ®ω.

Theorem 8.3. For every E0eR, {ω|E0ESω} has measure zero.

Theorem 8.3 extends the result that {ω|E0 is an eigenvalue of Hω} has measure
zero (see e.g. [2]).

Our final result supplements the fact that a.e. on {E|y(E) = 0}, we have that
/z + (ω,E0 + iO) = — /z_(ω,E0 + zΌ) (continuous case) or ra+(ω, E0 + zΌ)
= - m_ (ω, E0 + zΌ) - E0 - F(0) (discrete case).

Theorem 8.4. (a) (Continuous Case.) E0eΘω if and only if either lim |fe + (ω, E0 + is)
+ /ι_(ω,E0 + ϊε)| = 0 or lim|fe + (ω, £0 + z'εΓ 1 +fe_(ω ? £0 + iεΓ *| =0.

(b) (Discrete Case.) E0eΘω ϊ/ αnrf on/y i/ either lim|m+(ω,£0 + iβ)
| = 0 or lim|m+(ω, E0 + ic)~ : + Γm_(ω, £0 + iβ)

Remark. Thus (a) can be paraphrased by saying h+ = —h_, although the possi-
bility that both limits are infinite must be allowed as must the possibility that we
go through a subsequence.

Proof. We prove (a), (b) is similar. Im G has an infinite limit only i f (/ ί + +/z_)~ 1 ^oo
and lmd2G/dxdy has an infinite limit only if h + h_(h++h_)~1=(h~1 +/ZI 1 )
->oo. Π

To link 6ω to solutions of the Schrodinger equation, we need to deal with the
fact that f+(Tyω, x, £0 + iε) can be singular because /+ (ω, y, E0 + iε) has a zero as
ε|0. We thus define

so η is normalized by /? ± (ω, 0, E) > 0, |τ/±(ω,0, E)

Theorem 8.5. £0eΘω z/ αnrf only if, for some sequence εn^0, limf7±(ω,x,E0

+ iεn) = η±(ω, x, £0 + zΌ) exists and for a constant c :

η + (ω, x, £0 + zΌ) - c/7_ (ω, x, £0 - zΌ) . (8.1)

Proof. Define two dimensional vectors a± =(1, ±/ϊ±)/"|/l+ |/z+| 2. Using compact-
ness of the unit vectors, we see that E0e Sω if and only if there exists εn!0 so that
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a+(E0 + iεn) have limits which are equal up to a factor (the factor is only necessary
if lim|/z± | = oo). From this, (8.1) follows (and c is only necessary of
lim|/ι± | = oo). D

This last theorem illustrates the difference between the a.c. spectrum, where
u+=ΰ_^rU_ and the singular spectrum and supports our belief that the singular
spectrum has multiplicity 1.

Proof of Theorem 8.2. If η + (ω, x, £0 + iεn) has a limit, so does η + (Tyω, x, E0 -f zεj
for all y and it equals const77+ (ω,x+j;, E0 + iεn)9 so if (8.1) holds for ω, it holds
for T yω. Π

oo

Proo/ of Theorem 8.3. By Lemma 6.3 and Fatou's lemma, J \η±(x,ω,E0)\2dx
o

^S±(ω,£0). Thus if S+<oo and S_<oo and £0eSω, we see that £0 is an
eigenvalue of Hω. Thus, in the continuous case, where S+ <oo and S_ < oo a.e.
have that

{ω IE 0 e <3ω} C {ω | E0 is an eigenvalue of Hω} (mod. measure zero). (8.2)

The set on the right has measure zero [2]. In the discrete case, we use Theorem 6.5
and note that if Imm+ = oo and £OG Sω, then Imm_ = oo. Thus if E0e Sω, either
S_ < oo, and 5+ < oo or else there exist /2 solutions at -f oo and — oo vanishing at
zero, or we are in a set of measure zero so again (8.2) holds. Π

9. Multiplicity of the Absolutely Continuous Spectrum

We want to note the following, which is connected to ideas of Davies and Simon
[3] and the stationarity which says V looks the same near -f x and — oo.

Theorem 9.1. The absolutely continuous spectrum of a stochastic Schrδdinger
operator or Jacobi matrix is uniformly of multiplicity two.

Proof. We give the details in the Schrodinger case. The Jacobi case is similar. If H*
is the operator on [0, oo) with Dirichlet boundary conditions, then

lim G(x,y) = h . (ω, £), where G(x, y) is the kernel of (H — E)~l and h+ is
y > j c > o oxoy

ylO

the function discussed in Sect. 3. By the arguments in Kotani [10], for a.e. ω,
lim/ι+(ω,E + iO) is non-zero and finite precisely for a.e. E in {E\γ(E) = Q}. Thus H*
has as its essential spectral support this set. By general principles [16], the spectral
multiplicity of H* is exactly 1. Thus H^®H~ has a.c. spectrum of uniform
multiplicity 2. But by the Kato-Birman theory (see e.g. [14]), the absolutely
continuous spectrum of H0 + Vω = Hω is unitarily equivalent to H^®H~ [since
(HCΰ + 0~ 1-(H++0" 1®(H^+0~ 1 is finite rank]. Π

The point spectrum clearly has multiplicity 1. We conjecture that the singular
spectrum also has multiplicity 1. This conjecture would follow from one that says
that for the continuum eigenfunctions associated to the singular spectrum, we have

1 R

lim —
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Appendix A. High Energy Behavior of the Integrated Density of States

Let k(E) be the integrated density of states for — d2/dx2 + V(x\ where V(x) is a
stationary ergodic stochastic process. When V is uniformly bounded, Avron

and Simon [2, remark following Theorem 3.2] showed that \k(E) — π~1]/E\
= 0(E~1/2). In Sect. 4, we need to obtain the 0(E~1/2) term. We will prove this
using the "rotation number" point of view for k [8], rather than the direct density
of states arguments in [2]. Let E = κ2, and let u solve —u" + Vu = Eu with
boundary conditions du/dx(0) = 0. Make an energy dependent Prϋfer transfor-
mation to

u'(x) = — κr(x) sin θ(x) ,

u(x) = r(x)cosθ(x).

Straightforward calculations show that θ obeys :

ax

Moreover, it is a basic fact [8, 2] that

k(E)= lim (πxΓlθ(x). (A.2)

To illustrate the power of (A.I), we remove the boundedness hypothesis of the
above quoted result of [2] :

Theorem A.I. // Exp(|F(0)|)< oo, then

Proof. By (A.I)

o

If we divide by x, use (A.2) and the ergodic theorem, the theorem results. Π

Our main result in this appendix is :

Theorem A.2. // Exp(|F(0)|2)< oo, then

1'2). (A.3)

Remarks. 1. We emphasize that by stationary stochastic process, we mean a
separable probability measure space (Ω, Σ, μ) and one parameter measurable family
of measure preserving transformations Tx with Vω(x)=f(Txώ) for some function/
Since Uxf=f°Tx is continuous on L2, fεL2 [i.e. Exp(|F(0)|2)<oo] implies also
that Exp(|F(x)-F(0)|)^Exp(|F(x)-F(0)|2)1/2 goes to zero as x|0. We use this
below.

2. After the proof, we discuss improved estimates on the o(E~1/2) term in
special cases.
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Proof. We rewrite (A.I) as

d^=κ--K-iV(x)- ^κ-1V(x)cos2θ. (A.4)
dx 2 2

The idea will be that the last term wants to average to zero, since the cos oscillates
faster and faster and at a more uniform rate as K— »oo. Explicitly, set xn = πn/κ,
Ax = π/κ, and θn = θ(xn). Note first that by (A.I)

\θ(χ)-θn-κ(x-xn)\^κ-ι f \V(y)\dy. (A.5)
xn

Set

-,
Ax \ 2κ Ax

By (A.2), we must show that

Γ i V , , ! ^-l/2ϊlim - > \Ai\ = o(E ' }.
M —» on vι "̂"̂  J

In fact, since k is a.e. independent of ω, we only need prove that

I V 1

Exp lim - Σ \Aj\ = o(£- 1/2) . (A.6)
V-conj . to V

By (A.4)

J 7 ' V(x) coS(2θ(x))dx = Bn

Bn ~ (2κA x) ~ 1 V(x) cos [2κ(x - xn) + 2Θ J dx

since cos integrated over one period integrates to zero. Thus

ExpfίS -"
-

n o

By the first remark above, this is ^/c"1) as κ->oo.

Cn = (2κA xΓ1 j F(x) [cos 2θ(x) - cos (2κ:(x - x J + 2Θ J] dx
Λ;Π

so by (A. 5) and Schwarz
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Thus

Expfϊ jm -n "Σ \Cj\\ ^(π/2κ3)Exp(|F(0)|2).

This is 0(κ~3\ and so (A.6) is proven. Π

The above proof shows that

with (recall Ax = πE~1/2)

b = ̂ E~112 (AxΓ1 f E(\V(x)-V(0)\)dx\,
I 0 J

c = iπ£Γ3/2Exp(|F(0)|2).

In explicit cases, one can show b is better than o(E~ 1/2). For example, if F is a
smooth function of Brownian motion on a manifold, E(\V(x)— V(0)\) = 0(xίl2)9 and
thus since (Ax)1/2 = 0(E~ 1/4), we see that the error is 0(E~ 3/4). If Fis itself smooth
so V is in L°°, then by the above proof the error is 0(E~1). We believe that with
more effort, one could get 0(£~3/2) with sufficient smoothness on F If, as we
require in Sect. 4, E(\V(x)- 7(0)|) = o(l/|lnx|), then b = E~1/2o(l/\lnAx\)

Appendix B. A Theorem from Hard Analysis

In this appendix we want to give Wolffs proof of Theorem 5.4. Since dG/dE has
1 ΊS-l

boundary values which are finite a.e., so does G(E0) = — j — (E0 + iy)dy
Q aE

dy
+ G(E0 + ί). Let γ(χ, y) = Re G(x + iy). The real point is to control lim — - (x, y). We
introduce the non-tangential maximal function: y i°

It is easy to see that PF* is lower semicontinuous and in particular, {W*(x0)>λ} is
open for any λ. Since ln(dG/dz) is locally in H2, we can apply results on the non-
tangential maximal function for H2 (which is controlled using the Hardy-
Littlewood maximal function) to see that

Proposition B.I. For each interval (c,d)

\{x\W*(x)>λ;c<x<d}\^D/ln(\λ\ + 2),

and in particular, the measure goes to zero as λ-^co.

dy
By this proposition, it suffices to prove for each λ, c, d, that lim — (x, y) = 0 for

y o ox
a.e. x in the set where W*(x) ^λ,c<x<d and γ(x) = 0. Henceforth, fix λ, c, d. Define

)^λ; c<x<d} and for
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y trivially obeys \y(x) — y(x')\ύ\x — x'\, so it has a derivative y' a.e. and it is the
integral of its derivative. Indeed, since S is closed, (c, d)\S = (J(αt , fo ) is a union of
disjoint open intervals and y' = 0 on S\{at}u{&.}, / = +1 on each (#., |(α. + ί?.)) and
= — 1 on each ((^c/f -f bt), bt). For each ε > 0, /}(x) = y(x, r(.v) + ^ ) is Lipschitz and thus

-—- (x, y(x) + ε) + ̂  (x, y(x) + ε)y(x)

Now suppose that x0,x1eS and |x1 — x0 |<2. Then for all xeίx^xj and all ε

small, we have that (x,y(x) + ε) lies in (J {^J^)!)^ ̂  1 |x3 —x 2 | =y?,}, and so in

the last integral the integrand is uniformly bounded (by 2λ). Thus, by dominated
convergence, we can take ε to zero and find that if x0, xί e S and \xί — x0| < 2, then

where

g(x) = lim —- (x, y) if x e S
yίOOX

if x^.

Now we need only use Lebesgue's theorem on differentiation of integrals twice.
First, applying that theorem to the characteristic function of T={xeS|y(x) = 0},
we see that a.e. x0 in Tis a limit of other points x1 in T. Secondly, applying that

dy
theorem to #eZ,°°, we see that for a.e. x0e T9 g(xQ) = lim — (x, y) = lim

>UO <3χ XI^XQ

X l

(x1 — x0)~1 J g(x)dx. Taking the limit through a subsequence in T9 we see that for
X0

a.e. x0 in T, we have 0(x0) = 05 which is the desired result, Π
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