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Abstract. We consider families of operators, Hω, on ^2 given by (Hωύ)(n) =
u(n + 1) + u(n- 1) + Vω(ή)u(n\ where Vω is a stationary bounded ergodic
sequence. We prove analogs of Kotani's results, including that for a.e.
ω,σac(//ω) is the essential closure of the set of £ where γ(E) the Lyaponov index,
vanishes and the result that if Vω is non-deterministic, then σac is empty.

1. Introduction

In a beautiful paper, Kotani [10] has proved three remarkable theorems about one-
dimensional stochastic Schrόdinger operators, i.e. operators of the form — d2/dx2 +
Vω(x) on L2( — 00,00), where Vω is a stationary bounded ergodic process. It is not
completely straightforward to extend his proofs to the case where —d2/dx2 is
replaced by a finite difference operator, and that is our goal in this note.

Explicitly, let (Ω,μ) be a probability measure space, T a measure preserving
invertible ergodic transformation, and / a bounded measurable real-valued
function. We define Vω(n) =f(T"ω). We let Hω be the operator on /2(Z)

(Hωu)(n) = u(n + 1) + u(n - 1) + Vω(n)u(n).

Integrals over ω will be denoted by E( ).
Given a subset, 7, of Z, we let Σj be the sigma-algebra generated by {Vω(n)}neJ.

00

We say that the process is deterministic if Σ _ ̂  = Q Σ(_ ̂  _j} is up to sets of measure
j=ί

zero, £ (-OO,OO;P equivalently if Vω(ή) is a.e., a measurable function of {Vω(n)}n^0.
Otherwise it is non-deterministic. Almost periodic sequences are deterministic.
Independent, identically distributed random variables are non-deterministic.

The Lyaponov index γ(E) is defined, for example, in [ 1,4]. It can be characterized
as follows: For each complex E, for a.e. ω, any solution of Hωu = Eu (in sequence

sense) has lim -ln[|w(π)|2 + \u(n + 1)|2]1/2 exists and it is either γ or -y. It is an
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old result of Pastur [11] and Ishii [7] (see also Casher-Lebowitz [3]) that y(E) on
the real axis is related to absolutely continuous spectrum.

Theorem 0 ( [7, 11]). Ify(E) > 0 on some set A in R, then E™(A) = Qfor a.e. ω, where
E™ is the absolute component of the spectral projection for Hω.

Here we will prove the following:

Theorem 1. Ify(E) = Q on a subset, A, of R with positive Lebesgue measure, then

Theorem 2. // y(E) = 0 on an open interval, I, of R, then for a.e. ω, the spectral
measures are purely absolutely continuous on I.

Theorem 3. // the hypotheses of Theorem 1 hold, then Vω is deterministic.
Theorems 0 and 1 show that σac is for a.e. ω the essential closure of the set where

y(E) = 0. Theorem 3, which can be viewed as a kind of generalized Furstenberg
theorem, says Thms. 1 and 2 aren't applicable very often. Theorems 0 and 3 imply
that if V is non-deterministic, σac = 0. Theorems 1 and 2 are related to recent results
of Carmona [2].

Theorems f-3 are precise analogs of the main results of Kotani [10] in the
continuous case. Kotani uses functions h+(ω,E) defined for Im£>0 by the
following: If Im£>0, there are unique (up to factor) solutions, u+(x,ω,E),
of —u" + (V — E)u = 0 which are L2 at ±00. Define

tt'+(0,ω,E)
Mω,E) = + — - "

"u±(0,ω,£)

As is well-known, the Green's function obeys

G ω (0,0;£)=-(Λ + +Λ_)~ 1 . 0-1)

Since E(G) is the Borel transform of the density of states and the Thouless formula
relates y to this density of states (see e.g. [1]), one has:

£(Im([Λ+ +/z_Γ 1 ))= -dy(E)/d(ImE). (1.2)

Using the formula of Johnson and Moser [8]

£(ReΛ + ) = £(ReΛ_)= -y(E\ (1.3)

Kotani then proves:

E((lmh±Γί) = 2y(E)/lmE. (1.4)

Equations (1.2) and (1.4) then imply

E(l(Imh+Γ ' + (Im/?_Γ *] {(Imλ+ - Im/2_)2 + (Re/z+ + Reh_)2}/\h+

= 4[(ImEΓ M£) - dγ(E)/d1mE].

The three theorems then follow from (1.4), (1.5).
The initial stages of extending Kotani's analysis are obvious. The proper analog
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o f / z ± are:

m±(ω,£)= -«±(±l)/tt±(0),

where u± are the solutions I2 at ±00. The analog of (1.2) which will come from an
analog of (1.1) is

E(lm([m+ +m_ + E - F(O)]"1)) = - dy(E)/d(lmE). (1.6)

The analog of (1.3) is also easy:

(1.7)

The analog of (1.4) is more subtle because Kotani's proof does not seem to
extend. However, our first proof of (1.8) was by using the idea of Delyon-Souillard
[5] to use linear interpolation to force the discrete case to look like the continuum
case. By a more direct proof we will show, in Sect. 2, that

E(ln[l +(Im£/Imm±)]) = 2y(£). (1.8)

It is not completely trivial to get an analog of (1.5). The key is the inequality

From this and (1.8), we will get, in Sect. 2, two inequalities which are close enough to
the equalities (1.4), (1.5) to prove Thms. 1-3 in Sect. 3. In Sect. 4, we make a remark
on the connection of these results and the work of Carmona [2].

2. The m Functions

Given E with Im£ > 0 and ω, it is easy to show that the difference equation

u(n + l) + u(n-l)+ Vω(n)u(n) = Eu(n) (2.1)

has unique solutions u±(n) which are ^2 at ± oo. Moreover,

2iIm(w±(0)M±( ± 1)) = w±(0)M±( ± 1)) - u±( ± l)u±(0).

Recognizing this as a Wronskian of solutions of (2.1) for E and E, and using the fact
that u± ->0 at ±00, one finds that

\u±(±J)\2> (2 2)

so that w±(0) ή= 0, and we can define

u + ( ± l )
m±(ω,JS)= -- = - > (2.3)

"±(0)

and by (2.2), it obeys Imm+ >0. For later purpose we note that

m±(T-nω)=-u±(n±l)/u±(n\ (2.4)

so that the equation of motion for u yields

m±(T-"ω) = V(n) -E- \m±(T-n±lω)Y\ (2.5)
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and in particular

Ml)

MO)
= m_+E-V(0). (2.6)

As usual, (Hω — E) 1 has an integral kernel Gω(n,w;E) which is symmetric in n,w
and for n ^m:

G>,m;E) = u_(n)u+(m)/ίu+(l)u_(Q) - «_(

In particular, (2.3) and (2.6) yield

- GJO^ EΓ1 = m+ + m_ + E - V(0). (2.7)

Now, Gω(0,0;£) is related to the density of states by [1, 8]

dk(E')
E(Gω(0,0;E)) = J — — (2.8)

ϊ-j J-j

The Thouless formula [1] says that

γ(E)= \\κ\E-E'\dk(E'\ (2.9)

Equations (2.7), (2.8) and (2.9) immediately imply:

Proposition 2.1. £(Im([m+ + m _ + £ - I/JO)]'1))- -
We let H^ be the operator on /2(1, oo) which is obtained from //ω by imposing

the boundary condition (be) u(0) = 0. If w(n) obeys (2.1) with the be w(0) = 0,
w(l) = 1, then for n^m:

and in particular

m+(ω,£) = (Hc:-£)-1(l,l)- (2.10a)

By the spectral theorem, the right side of (2. 1 0) has the form

f , <2.10b)

where Jr fp = l and p is supported on [ — || /!!«,- 2, || /!!«,+ 2]. From this
representation one easily obtains an upper bound on |m+ | and a lower bound on
|Imm+ | and so:

Proposition 2.2. For any fixed E with ImE > 0, there are constants c^E), c2(E\ d^E),
d2(E) in (0, oo) with

d^E) £ Imm+(ω,E) ^ d2(E\

for all ω.
From the bounds on \m+\ and the fact that for a.e. ω every solution either
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"decays" as e~y\n\ or grows as e+y\n\, we see that

1
lim-ln|ιι+(π)/ιι+(0)l=-y.

Since \n\u+(n)/u+(0)\ = £ ln|m+(T~ jω)| (by (2.4)), we can apply the individual
j=o

ergodic theorem (ln|m+(ω)| is bounded and so in L1 by Prop. 2.2) to find

Proposition 2.3. £(ln|w+(ω,£)|) = -γ(E).
Now, we come to the first result of this note that is essentially new.

Proposition 2.4. £(ln(l + [Im£/Imw+(ω,E)])) = 2y(E).

Proof. We start with (2.5). Taking imaginary parts, then dividing by Imm+ and
taking logs we find

= ln( - Im[m+(Tω9E)']-1) - ln(Imm+(ω,£)).

But — Im[m+ 1] = Imm+/|m+ |2, so taking expectations of both sides and using the
invariance of μ under T, we find that the expectation of the right side is — E(ln|w+|2)
which is 2y by Prop. 2.3.

Lemma 2.5. For x ̂  0, log (1 + x) ̂  x/(l + {x).

Proof. Both sides are equal at x = 0. The derivative of the left hand side is (1 + x)~ 1

and that of the right is (1 + ^x)~2 =(1 H-x + ̂ x2)"1, so we get the inequality by
integrating.

Theorem 2.6. Let b(ω,E) = m++m_+E- 7(0) and n+ = lmm± +%ImE. Then:

(a) E((n+Γ1)^2y(E)/lmE,
(b) E(\n~ ί + n~ 1~]{(n+ - π_) 2 + (Reb)2} /\b\2} £ 4[(Im£)- ly(E) -

Proof, (a) follows immediately from Prop. 2.4 and the inequality in the lemma. To
get (b), we write (n+ —n_)2 = (n+ +ri)2 —4n + n_, and using the fact that n+ +
n_ = Imfc, we see the argument in the expectation is π + α + nl1 — 4(n+ + n_)/b2 =
n~ 1 + n~ l + 4Im(l/fc). We use Prop. 2.1 to get E(lm(\/b)) and (a) to bound E(n + ̂
to get the required inequalities.

3. Proofs of the Theorems

Given Thm. 2.6, the proof below follows the strategy of Kotani [10] with some
changes of tactics. We begin by recalling without proofs some basic facts about
Herglotz functions. As remarked by Kotani [10], these are proven most easily by
mapping the upper half plane to the disc, taking logs and using the theory of H2

functions (see e.g. [6, 9]).
(1) F(z) defined in Imz > 0 is called Herglotz if it is analytic and has ImF(z) > 0

there. A typical example (indeed, up to linear factors, every example) is the Steiltjes
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transform of a measure, μ, on R, viz:

F(z) = iί^ (3.1)
π x — z

(2) lim F(x + Jε) = F(x -f ίO) exists (and is finite and non-zero) for a.e. xeR.
ε J O

(3) If F comes from μ, then dμac, the absolutely continuous part of μ, obeys

dμac(x) = [lmF(x + ίO)]έfcc. (3.2)

(4) If F comes from μ, dμsί =dμ — dμac is supported on {x|limImF(x + ι'ε)
ε|0

= ro}
(5) If F(x + ίΰ) = G(x + iO) for xeA, a set with positive Lebesgue measure and F

and G are Herglotz, then F = G.
(6) If Re F(x + zΌ) = 0 a.e. xe/, an open interval, then F has an analytic

continuation through / and F(x + iO) ̂  0 for any x in /.
(7) By (4) and (6), if F is a Steiltjes transform and ReF(x + ϊO) = 0 on /, then

μ = μac on /.

Proof of Theorem 1. By (2.8), (2.9), —γ(E) is the real part of a function whose
derivative j (dh(E')/Er — E) is a Steiltjes transform. Thus, by (2) above,
lim dγ(E° + ίε)/ds exists for a.e. E0 . For any such E0 where also γ(E0) = 0, we have
ε|0

that

lim y(£0 + iε)/ε = lim rfy(£0 + iε)/dε, (3.3)
ε|0 ε|0

and in particular the limit is finite. Thus, by Thm. 2.6 (a),

<oo (3.4)

By (2.1 Ob), for every ω,m+ (ω,£ + z'O) exists for a.e. £ so for a.e. £,ra+ (ω,£ + iO) exists
for a.e. ω. Thus, for a.e. £0 for which γ(E0) = 0, we have by (3.4) and Fatou's lemma
that

)<oo. (3.5)

So, for a.e. ω,E0, Imm±(ω,£0 + iO) > 0. Since m+ -f- m_ + E — K(0) has a finite limit
for a.e. ω,£, ImG > 0 a.e. E0,ω which implies μac has a positive component on such
E0 by (3.2).

Proof of Theorem 2. By (3.3), (3.5) and Thm. 2.6(b) and Fatou again, we learn that,
for a.e. pair {(ω,E)\γ(E) = Q}9 we have that

Imm+(ω,£0 + iO) = Imw_(ω,£0 + iO), (3.6)

Re(m+ + m_ -h £0 - 7(0))(ω,£0 + iO) - 0. (3.7)
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By (6) above, m+ + m_ + E — K(0) is analytic on / and nonzero, so (by (2.7)) G is
analytic through / which, by (4) above, implies dμsing = 0 on /.

Proof of Theorem 3. Suppose that y(E) = 0 on a set A with positive measure.
Suppose we know Vω(n) onn^Q. Then, {Vω(n)}n^ _ 1 determines m_ and so by (3.6),
(3.7), m+ is determined for a.e. E0εA (and a.e. ω) by { Vω(n) }n^0 and then by (5) above,
m+ is determined for all E. Thus the lemma below (which we learned from P. Deift)
shows that { Vω(n) }n ̂  0 determines { Vω(n) }n^.

Lemma 3.1. {Vω(n)}n^1 can be constructed from m+(ω,E).

Proof. By (2.10), w+(ω,£) determines (H + )*(!,!). But it is easy to see that
(H+)2k + 1(lJ)=Vω(k + \) + a function of {KJj)}^.^, so that inductively
(H+)*(U) determines VJJ).

4. A Connection with some work of Carmona

In [2], Carmona proved an interesting deterministic theorem showing that certain
conditions on {V(n)}n^0 imply H = H0+V has only absolutely continuous
spectrum in some interval. Here we give another condition which is clearly closely
connected to his which yields the same conclusion. For any V yielding a limit point
situation at ± oo , say | V(n)\ ^ — Cπ2, we still have functions m±(E) and m± depend
only on {V(n)}±n^.

Theorem 4.1. // limImw+(£ + iε)> 0 for all E in a set A, then for the spectral
e J O

measure dμ associated to <50, we have μs mg(A) = 0.

Proof. By assertion (4) above (the theorem of de'Vallee Poussin), μsing(C) = 0, where

C = {E|lim|G(0,0;E + iε)|<oo}. But since G - -(m+ + m_ + E - K(O))"1, we
εiO

have that |G| ^ (Imm+ H- Imm_ -f ImE)"1 ^ (Imm"^)"1 so the hypothesis implies
AaC.

This is connected to the considerations of Kotani, in that:

Proposition 4.2. In the stochastic context of Sect. 1-3, ify(E) = 0 on an interval, /,
then for a.e. ω, lmm+(E + ι'0,ω) > 0/or all Eel.

Proof. As we saw in Sect. 3, Im(m+ + m _ ) is everywhere nonzero and Imm+ =

This shows that the periodic example of Carmona [2] can be analyzed using
Thm. 4. 1 . Similarly, these methods extend to the continuum case and it must be true
that for the Stark problem — d2/dx2 — x, Imm+ > 0 for all E. This leaves us with an
open question : Within the stochastic setting, iϊγ(E) = 0 for all Eel, is it true that for
all ω and every compact K c /, we have that sup || ϊ/£(x,0) || < oo, where t/£(x,0)

E<=K,x>0

is the transfer matrix from 0 to x?
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