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Abstract. We discuss doubly infinite matrices of the form Mi — δi + 1 -\-δί ._ t

+ Ff<5i;. as operators on / 2 . We present for each 8>0, examples of potentials Vn

with \Vn\ = O(n~ί/2 + ε) and where M has only point spectrum. Our discussion
should be viewed as a remark on the recent work of Delyon, Kunz, and
Souillard.

1. Introduction

During the past few years, numerous results have appeared showing that most of
the spectrum of Schrδdinger operators — A + V is purely absolutely continuous
(a.c). This includes not only the "short range case", V(x) = O(x~ * ~ε) at infinity (see
e.g. [1]), but also the long range case where V(x) = O(x~ε) so long as derivatives
decay (see e.g. [5]) and the highly oscillatory case where V{x) = O{x~asmxβ) for
suitable α, β (see e.g. [8]). While there are examples of Pearson [7] with decaying V
where the spectrum is not a.c, the rate is so slow that one might be led to suspect
that reasonable (say power) decay always leads to a.c. spectrum. (The other
recently constructed examples with non-a.c. behavior, namely random [4] and
special almost periodic potentials [2], of course, have no decay at infinity.) Our
goal here is to indicate that there are power decaying potentials which lead to non-
a.c. spectrum.

In the end our examples will be for — A replaced by a finite difference operator
explicitly, on /2(Z) let

and
(Vu)(ή=V(i)u(ί).

We will consider M o + V on /2(Z). The potential V will obey V{n) ~O(n~ll2 + ε\ but
differences V(n+1)— V(ή) will also be 0{n~1/2 + ε). The non-random analog will be
potentials of the form x~αsinx with α < ^ . It is an interesting fact that the known
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spectral properties of such Schrδdinger operators is not pure point rather it is
mainly a.c. with some isolated eigenvalues [8],

Our main theorem is stated for almost all potentials in a random class of
potentials. Our proofs will use the recent formalism of Delyon et al. [3], and this
paper is essentially a remark on theirs.

Theorem 1.1. Let {W^™= -^be identically distributed independent random variables
whose distribution is r(x)dx with reL1 nL00 with bounded support. Let an be a fixed
sequence with 0 S an ^ 1 and an ^ C\ n\ ~ a for some α < \. Let V(n) = anwn. Then for a.e.
w, M o + V has only point spectrum.

Remark. 1. σ e s s(M 0 + F) = [ —2,2], so the point spectrum is dense in that interval.
The eigenfunctions there will be shown to decay at least as fast as O(exp( — c\n\β)),
where β = 1 — 2α, and this is probably the exact behavior if ann

a-+ const.
2. The identity of the distribution of wn is not really important, but for the

proof, independence is used heavily. In the end, the proof will go through as long
as the distribution of V(n) [note V(ή) not wπ; in our case, V(n) has distrn{x)dx,
where rn(x) = a~1rn(a~1x)~] is of the form rn{x)dx, where (i) Jrn(x)ώc = l,
(n) \\rn\\ao = O(nm) for some m, (iii) sup |rπ(fc)|^ l-n'2a for some £>>0, α<f. Here

k^Ko

Ko is the constant of Theorem A.3 (say X o = 0.3) and rn(k) = \eιkxr(x)dx. In
particular, one can add a fixed potential to the above Vw and still have only point
spectrum.

3. If ]£|αj < 1, then the trace class theory assures us that M o + V has lots of a.c.
spectrum, so if an^n~a with c o l , then our result definitely does not hold. The
behavior in the region ^ < α < l is open. Pearson's intuition [7] suggests that
perhaps the key is Σ(an)

2 = oo which suggests our α < | is the right condition.
Theorem 1.1 is proven in Sect. 2 by following the approach of [3] with minor

changes. The necessary estimates are in [3], but we repeat them in an appendix, in
part for the reader's convenience, and in part because the dependence of the
estimates on rn is in one place only implicit in [3] and we need the explicit
behavior.

2. Proof of the Main Theorem

In [6], Kunz and Souillard prove a criterion for a class of random operators on / 2

to have only point spectrum. The following is proven by their methods:

Theorem 2.1. Let Vw(ή) be a family of random potentials and let MW = MO + VW.
Define

where δt is the vector in L2 which is 1 at i and 0 elsewhere. If Σ\a{ίJ)\2 < oo for

z = 0,1, then for a.e. w, Mw only has point spectrum. ι

Proof. As explained in [6], the RAGE theorem implies that £( | |P c o n t ^. | | 2 ) = 0 if
Σ\a{iJ)\2< oo. Since polynomials in Mw on δ0, δί are dense in / 2, we know that

P c o n t = 0 i f | | P c o n t ^ , | | = 0 f o r ; = 0,l. D
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For national convenience, we study a(i, 0) with i > 0. The discussion of i 5Ξ 0 and
a(i, 1) is essentially identical. In [3], Delyon et al. introduce the integral operators
for α = 0 5 l :

For the case at hand, we will take p(x) = rn(e + x) = rnjx\ where rn(x) = α~1 r(α~ *χ).
We call these operators Tα;Λfβ. In [3,6], the following result is proven using the

operator (Uf)(y)=^f(^\:

Theorem 2.2. Define for N^j:

(...,...) Ϊ5 ί/ze L2(dx) mnβr product. Then

α(/,0)^ lim

where the integral is over any set big enough to include the spectrum of all Mw.

In particular, if supprC[ — B, # ] , we have

α(/,0)^C sup A{j,e;N)=CA(j),
^j+ 1

with C = 4 + 2B [since s p e c ( M W ) C [ - 5 - 2 , 5 + 2]]. If jj ||p>q is the norm of as a
map from Lp to 13, then since rf has L1 norm 1, since U is an isometry on L2 and
since To is a contraction on L2 [Theorem A.I (a)]:

Define Γ15 1 11/2
b i ^ l ^ + γ? sup \r(k)\2\ •

Using Theorems A.l(b) and A.3(a) and (c), we see that

iίj = 2S+ί or 2ί + 2. Since \f(k)\ < 1 if \k\ = 0, and |r(0)| = 1 with — τ |r(lc)| < 0 [since

it is essentially - jx2r(x)Jx + (jχr(x))2], we have for/Ismail sup |r(/c) | 2 ^e~ y μ | 2 for

some y>0, and thus | f e |-A

and

This decay always wins out over the growth of aj112 and yields enough decay to
have Y^AijΫK oo. Thus Theorems 2.1 and 2.2 yield Theorem 1.1. Π
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Appendix: The Basic Estimates

We define operator T^r) on nice functions by:

and

In this appendix we want to prove certain estimates which we emphasize are
mainly in the paper of Delyon et al. [3]. We put them here in part for the reader's
convenience, and in part because our proof of Theorem A.2 is an alternate to theirs
which we prefer. Our main reason is to make the r dependence of certain estimates
explicit (since we need that) and to emphasize that the symmetry of KUK which
they use is not needed (and is not present in our case). We owe the argument in
Theorem A.l(b) to A. Klein and C.Prakash.

Theorem A.I [3].

(a) IfreL\ then I T O / H ^ H J/| | , . (A.I)

(b) if reϋnL™, then | | T 0 ( r ) / | | 2 g \\r\\H2\\r\\^2\\f\\v (A.2)

Proof (a) is trivial if we first integrate dx and then dy; indeed for r, / ^ 0 , we have
equality.

(b) l|T0(r)/||2^ί r(x+ -) | \r(x+ -) \f(y)\ \f(z)\dydzdx
\ 3711 \ zl

\f(y)\\f(z)\dydzdx

HMUMUI/II2. D
To analyze T1? we follow Delyon et al. [3] (modulo a sign) and write

(A.3)

where

and

and let J^ be the conventional Fourier transform. Define K(r) = $FK(r)3F'~1,
U = ̂ U^'1. Since #" is unitary on L2, to study L2 properties of Tv we need only
study KU. Obviously

(K(r)g){k) = f(k)g(k). (A.4)
To study U we note

Lemma A.2. JJ has an integral kernel (say in distributional sense) a(k, p), where
(a) a = aί + a2 with supj|α1(/c,p)|2rfp< oo and sup \\a2{k,p)\2dk< oo.

k p

2(b) For any R, f \a{k,p)\2dpdk< oo.
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Proof, (b) follows from (a). For proving (a), we note that

(in distributional sense). Let gx be in C^ with gx = \ near 0, and let g2~^~Qv
Define

For fixed p, α2(fc, p) is the Fourier transform of (2π)~x/Vp*~ 1gr2(x)|x|~1, which is in
L2, so

independently of p. By changing variables from x to x" 1 , we see that

so

independently of p. •

Theorem A.3 [3].
(a) IIT^/II^H/ll^ίΠlrl l^l .
(b) // r.qeϋnL2, then T^ήT^q) is compact.
(c) For some fixed Ko and r9q with ||y||x = ||g|li = 1 | | r | | 2 <oo, | |p | | 2 <oo

(A.5)

where
2J{l + iβ sup \q(k)\Ύ12}. (A.6)

Proof, (a) is trivial since U is unitary and K is a contraction if ||r|| x = 1.
(b) Since U is unitary, we need only show that K(r)UK(q) is compact. Since

reL2 and qeΠ0, f(k)aχik,p)q(p)eL2(R2) and similarly, since rεL^^qεL2,
r(k)a2{Kp)q{p)GL2{R2\ so K(r)UK(q) is Hilbert-Schmidt.

(c) Since 1/ is unitary, we need only show that if | | φ | | 2 = | | φ | | 2 = l, then

\(φ,k(r)UK{q)ψ)\£A. (A.7)

Pick Ko so that

J WKqψdkdq)1'2^, (A.8)

which is possible since the left side goes to zero as K o | 0 (indeed, if one takes g1 to
be the characteristic function of [—1,1], one sees that one can choose

0 = 49π/512-0.3). If J \ψ(k)\2dk^, then

+ ^ sup
11
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so (A.7) certainly holds since U and K(r) have norm 1. Similarly, (A.7) holds if

f
\\^0

Thus, we only need to check (A.7) if \\φ+\\ Sh \\ψ+\\ =ϊι where φ+=φχ{\k\^κoy
Let φ_=φ — φ+ and note that by (A.8) and the fact that K( ) preserves supports
and pointwise decreases values (if || || 1 = 1),

where we have used the fact that the norm of an operator is dominated by its
Hilbert-Schmidt norm. Thus

16 ~ 16

as required. •

Remarks. 1. (b) is not used to estimate (c). We include it since it can be used to
provide a computationless proof that HT r̂)7 (̂̂ )11 < 1 (see [3]).

2. If r, q are fixed positive with L1 norm 1, and rλ(x) = r(λ~ίx)λ~1 so fλ(k)
= r{λk), then (A.5) says that WT^r^T^W^ί-Oiλ2) as λ[0. We claim that also
\\τi(rλ)τMλ)\\^l-O{λ2) so that 0{λ2) is precisely the correct behavior. For
translating, we can suppose without loss that jxr(x)dx = jxq{x)dx = 0. Then

Q. Choosing g in C^ with [jg = g, we find that T1(rλ)T1(qλ)g = g + O{λ2\ so
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