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SUBHARMONICITY OF THE LYAPONOV INDEX

W. CRAIG AD B. SIMON*

1. Introduction. There has been intense current interest in a class of one
dimensional Schr6dinger operators

_d2
+ V (x)

dx

on L( o, o) and their discrete analogs on l(Z)

(Mu)(n) u(n + 1) + u(n 1) + V,o(n)u(n) (1.2)
where the potential V is an ergodic process in the sense that the index 0 lies in a
probability measure space (2, d/0) which supports a group rx (x R in case (1.1)
or x Z in case (1.2)) of measure preservi.ng ergodic transformations with
V(x +y)= V(x), where sup(lV (x)llx R or Z, 0 f)< o. The most
heavily studied cases are the "random" ones where rx has strong mixing
properties (e.g., i.i.d.’s in case (1.2) [8, 3] or Morse functions composed with
Brownian motion on a compact manifold in case (1.3) [4, 9, 2]) and the almost
periodic case where f is a compact metric space and the -’s are isometric (see
[12] for a review of this).
The present paper represents a contribution to this theory. Motivated in part

by old work of Thouless [13], and in part by recent work of Hermann [5] (see
below), we will prove that a basic quantity is a subharmonic function, and more
significantly, derive some important consequence of this observation. Interest-
ingly enough, the fact that certain functions are upper semicontinuous while
others are not will play a major role. For this reason, we single out functions
which are subharmonic except for semicontinuity:

Definition. A function, f, on C with values in [-, ) is called submean if
and only if for all z0 C and r > 0 we have that

< (2r)-f02rf(z0 + rei)dO.f(zo) (1.3)

For the reader’s convenience we recall

Definition. A function f on C is called uppersemicontinuous (u.s.c.) if and only
if for any Z Zo, limn- f(zn) < f(z). Equivalently, if given z and e we can
find with f(z) < f(z) + if z z1 < .
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Definition. A function f is called subharmonic if and only if it is submean and
U.S.C.

Uppersemicontinuity is singled out because it implies a strong form of the
maximum principle. For our purposes it is relevant because:

THEOREM 1.1. Iff is subharmonic and zo is fixed then

f(zo) lim(rr2)-1 f(z)d2z (1.4)
r--)O dlz z0[ <

and iff is submean

f(z) < r---)olim (rr2)- lflz- 01 < f(z) d2z" (1.5)

Proof. (1.5) is an immediate consequence of (1.3). The other half of (1.4)
follows by u.s.c.

For the reader’s convenience we also recall:

THEOREM 1.2. Iff(z) is a sequence of submean functions with suPII<R If ( )l
< oo for any R, then f(z)=--lim fn(Z) is submean.

Proof. For any N, obviously

fn(zo) <(2r)-l;f.(zo + rei)dO<(2r)-lf sup fn(zo + rei)dO
n>N

SO SUPn>N fn(20) is submean. By the monotone convergence then, infN sup,>N fn
--= fo is submean.

THEOREM 1.3. If f, is a decreasing family of subharmonic functions then
foo(z) inf, f,(z) is subharmonic.

Proof. foo is submean by the last theorem. An inf of u.s.c, functions is u.s.c.

We will also need the following standard theorem (see e.g., [10]):

THEOREM 1.4. If A(z) is an entire matrix valued function, the logllA(z)ll is
subharmonic.

In the context of equations (1.1) and (1.2) define the 2 2 matrix Tt(to, E) so
that in case (1.1) Tt(o,E)(a,b) is (u(l),u’(l)), where u solves (1.1) u Eu with
u(0)= a, u’(0)= b. In case (1.2), let Tt(o,E)(a,b) be (u(l + 1),u(l)) where
u(1) a, u(0)= b. We define

,(0,E) I/I-11nll Zz(0,E)lt.

The subadditive ergodic theorem [11] asserts that
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THEOREM 1.5. 7(E) liml/l_o fUo dlzo(W) Yt(E’ w) =-- inf/f dlzo(W) yt(E, w) exists,
and for E fixed and a.e. , yt(w,E)--) y(E).

y(E) is called the Lyaponov exponent. Please note the difference between
3,(E) and 3,(E,0); it is the former, which is an averaged quantity, which is
considered in most of this work. Our basic observation, whose consequences we
will develop, will appear in section 2:

THEOREM 2.1. y(E) is subharmonic.

A basic consequence will be that if we define

then

THEOREM 2.3.

(E,o)= lim /((2,E)

For a.e. o, we have for all E

(E,o) < y(E).

In the almost periodic case, a.e. o can be replaced by all o.

Using rather different methods that appear special to the a.p. case, Johnson [6]
has proven Thm. 2.3 in the a.p. case.

There is a connection between Theorem 2.1 and the fact that the spectral
radius of a Banach algebra valued analytic function is subharmonic. This fact,
and related results, are discussed in [14, 15, 16].

In section 3, we will use Thm. 2.3 to prove:

THEOREM 3.2.
u Eu) obeys

If a.e. o, we have that any solution u of (1.1) u Eu (resp. (1.2)

lim l-’n[lu(Z)l + lu’(l)l=] > /(E)

resp. lim l-’ln[lu(1)l / lu(l- 1)1-] ’/ > -(E)).
This result has an important consequence in the Brownian model of random

motion. In this model, (f],d/0) is two-sided Brownian motion on a compact
Riemannian manifold, M, with Brownian path b(t); f is a Morse function on M
and V,o(x)= f(b(x)). In [4], Goldsheid et al. proved that for a.e. 0 (1.1) had only
(dense) point spectrum and in [9], Molchanov proved that for a.e. 0, every
eigenfunction decays exponentially.

In section 4, we simplify the proof of the Thouless formula given by
Avron-Simon [1], and prove it ’for all E, and in section 5, we prove the following
theorem on the modulus of continuity of the density of states.
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Definition. A function is log-H6lder continuous if for all R, there is a C > 0,
such that whenever Ixl < R, Ix- Yl < 1/2, then

If(x) f(Y)l < c(lnlx Yl-1)--1.
THEOREMS 5.1, 5.2. In both cases (1.1) and (1.2), the integrated density of states

is log-H61der continuous.

The fact that k(E) is uniformly equicontinuous allows us to conclude that
whenever k(E) or f dlxo(w)k,o(E) converges pointwise (see Avron-Simon [1]), the
convergence is actually uniform on compact sets.
Our realization of the importance of subharmonicity comes from two sources.

First, the integral

flnlE- E’I dk(E’)

occurs in the Thouless formula, while

lnll Zz(E)llv’(e) 7
and both these quantities look suggestively subharmonic. Secondly, M. Hermann
[5] studied a situation in which Tt(E,w) for E fixed was analytic in w and for
which the integrals over d0(w) were averages over the circle, so the submean
property was very useful. While semicontinuity played no role in his work, and
while he used only subharmonicity in w, his considerations were extremely useful
to us.

It is a pleasure to thank J. Avron for valuable discussions.

2. Basic results.

THEOREM 2.1. y(E) is subharmonic.

Proof. By the inequality IIABII < IIAII IIB II, we have that (l + m)’[t+m(E,w
< lh(E,w) + m/m(E, Ttw), so averaging over 0, the quantity lh(E) f lt(E,w)
dtxo(W) is subadditive and thus 3,(E)=infy2,(E) and 2,(E) is monotone
decreasing. By Thm. 1.4, yt(E) is subharmonic, so by Thm. 1.5, so is ,(E).

THEOREM 2.2. (E, w) is submean.

Proof. By Thm. 1.4, ,(E,0) is subharmonic and so submean. Thus, this
result follows from Thm. 1.2.

THEOREM 2.3. For a.e. w, we have that for all E

(E,w) < y(E).

In the almost periodic case, a.e. w can be replaced by all w.
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Proof. Fix E. By Thm. 1.5, (E, to)= 3/(E) for a.e. to, so (E, to)= 3/(E) for
a.e. pairs (to, E) (with respect to dgo d2E). Thus, by Fubini’s theorem, for a.e.
to, (E, to)= 3/(E) for a.e.E. In the a.p. case, this holds for all to (and all E with
ImE > 0) by the proof of the Thouless formula (see [1] or section 4 below). If
(E, to) 3/(E) for a.e. E, and E0 is fixed, we have for any E0

E0l < E0l <

Divide by (rr2) and take r to zero. The right side converges to 3/(E0) by Thms.
2.1 and 1.1, and the left side is larger than (E, to) by Thms. 2.2 and 1.1.

3. Lower bounds on eigenfunction decay. We have already defined (E, to).
Define 3/(E, to) to be lim. Given a solution of (1.1) u Eu (resp. (1.2) u Eu) let

be the two vector (u(l),u’(l)) (resp. (u(l+ 1),u(l)) and let +
-----li-".t--, +_ ol/I-llnll,ll and u_+ limt_,___ ool/I-lnllOzll. Then:

THEOREM 3.1. Normalize u, so I1011 1. Then

IIOzll Tzll (3.1)

so that

Z+

___
> 0, + u_ > 0. (3.2)

Proof. (3.2) follows from (3.1) by taking logs, dividing by I and taking !---> oo
through a suitable subsequence. Let J ( -). Since T has determinant
(constancy of Wronskian),

(jTIj I) t-- T1-1
where is transpose, so since IIJII 1, we have that Tzll II Tz-ll Therefore

IlOoll rz-Ozll < Tzll IIOzll, 1

As an immediate consequence of this theorem and Theorem 2.3"

THEOREM 3.2. For an), solution u, u+_ > -3/.

This implies

THEOREM 3.3. For any solution u, if + <-3/ and

_
<-3/, then

u__ 3/and =3/= 3/.

Proof. We have -3/> + >u+_ > -3/by the last two theorems, and then by
(3.2) and Thin. 2.3 3/<3/< ? < 3/. 1

In the Brownian model, Carmona [2] has proven that for a.e. to, we have that
for every eigenvalue E, there is an eigenfunction ue with u_+ < -3/ (and these



556 W. CRAIG AND B. SIMON

eigenfunctions are complete by [4]). Thus

THEOREM 3.4. In the Brownian model, for a.e. and every eigenfunction,
eigenvalue pair (u, E) we have

lim l-llnl[t[ and lim 1-11n[IT(E)[[

exist; the first equals / (E) and the second equals (E).

Remark. We are only asserting I/]-lnll Tt(E)I has a limit for all eigenvalues
E of H(to), not for all E.

4. The Thouless formula. In [13], Thouless discussed a formula relating 3’ and
the integrated density of states, k, in the case (1.2)"

E’ldk(E’). (4.1)

Thouless’ proof was formal at some points, and as noted by Avron-Simon [1],
there are examples where the spectral measure of M,o is supported on the set of E
for which either v%, or (E,0)=/= f lnlE- E’ldk(E’). They give a rigorous
proof for (4.1) for a.e. E using some functional analytic gymnastics. The first step
is that there is a sequence of measures on (- A,A) with A 2 + VIl, called kt,

withdkt dk weakly (a.e. w in the general case, aH in the a.p. case) with

flnlE- E’I dkl(E’).Yl(E, )

If E [-A,A] (E may be complex), the lnIE-E’ is continuous for
E’ [-A,A] and (4.1) follows. The gymnastics in [1] were required to handle
E [-A,A]. To give a simpler proof, we note:

LA 4.1. Define

flnlE- E’I

by the convention that it is - if the integral diverges to -. Then it is a
subharmonic function.
Pro@ lnl’-E’I is subharmonic, so the expression is clearly submean. For

a > 0, define

fa(E) max{lnlE e’l, a)

Then fa is continuous and the expression is just infa>0 fa(E) by the monotone
convergence theorem. Thus the expression is upper semicontinuous.

A corollary of Thm. 1.1 is that if the subharmonic functions agree a.e. in the
complex plane, they agree everywhere. Thus, knowing (4.1) for ImE =/= 0 (which
is easy, see [1]), we find that by combining Lemma 4.1 with Thm. 2.1:
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THEOREM 4.2. (4.1) holds for all E.

In the continuous case (1.1), one must compare ,{(E) with the free Lyaponov
exponent ,t0(E). Define, for E C, ,t0(E)= Re(/-E), where the branch is

chosen so that /- E > 0 for E < 0. Let ko(E ) (1/r)/max(0,E) It is shown
in that for ImE :/= 0

v0(E)= f nl - {dk(E’)- dko(E’)}. (4.2)

The integral on the right is conditionally convergent in the sense that it is proven
that

lim f_’ lnlE- E’ld(k- ko)(E’)

exists and is finite if Im E =/= 0. Similarly, we find

,(E)- ,{0(E + a)= flnlE- E’I (dk(E’)- dko(E’+ a)}. (4.3)

The integral falnlE- E’ {dk(E’) dko(E’ + a)} is harmonic on C- [a,
hence if the integral in (4.3) is defined to be -o whenever it diverges to
then the right side is subharmonic on C- [a, o). As before, this establishes (4.3)
and then (4.2) for all E.
The Thouless formula for all E implies several general principles:
(a) Since lnlE- E’ is harmonic away from E’, and supp(dk)= spec(H) we

see that ,/(E) is harmonic away from spec(H).
(b) Using (a), Johnson [6] proves in the a.p. case that for any open interval

I c R, either I f3 spec(H,o) is empty or it has strictly positive logarithmic
capacity. Using his proof and our arguments to establish (a), this result is true in
the general ergodic case.

(c) Since 3’ is u.s.c, and nonnegative, at points with 3,(E)= 0 (necessarily this
implies that E spec(H,) [1]), 3’ is continuous.

(d) Since lnlE + ie- E’I decreases monotonically to lnlE- E’I as o$0 (when
E,E’ are real), we see that for any real E, ,{(E)= lim,,0 y(E + ie). This is how
Johnson [6] defines ,[ for E real. (He doesn’t appear to note that defined this
way is the a.e. Lyaponov exponent.)

(e) If E < E’, then lnlE- e- E’I converges monotonically to lnlE- E’ and
if E’ < E e0, then as e$0, lnlE e E’I is bounded, so if (a,b) is disjoint from
spec(H,o) but b spec(Ho) we have that y(b) lim,,o 7(b e). This is a result of
Johnson [6] in the a.p. case.

5. Log-H61der continuity of the integrated density of states. In [1], [7], it is a
basic result that k(E) is a continuous function of E, but the proof gives no
estimate on the modulus of continuity. We want to note that the Thouless
formula combined with the nonnegativity of , implies a continuity of k which is
uniform for E in compact sets and uniform in V as V runs through sets with
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VIIoo bounded. We consider both the case where k(E) is the density of states
and the case where we average over an auxiliary parameter such as occurs for
V(n)= cos(2rran +/9) where ct is rational and /9 is averaged. The proof of
log-H61der continuity is identical in these two cases, but the discrete case (1.2) is
slightly different from the continuous case (1.1); they are treated in Theorems 5.1
and 5.2 respectively.

THEOREM 5.1. In case (1.2) let Eo and E be real with lEo- Ell < 1/2. Then

Ik(E)- k(Eo)l < ln[lEl[ + lEo[ + VIIoo / 2J/In(lEo- E[-l).

Proof. Without loss of generality, assume E > Eo.

0 < v(Eo) flnlEo- E’I dk(E’)

e’lnlEo- E’[dk(E’)
dEo

+ fleo- E’I <
lnlE- E’I dk(E’) + fl < leo- E’llnlE-- E’I dk(E’).

(E’ < Eo}U(EI< E’}

Hence, since the second integral is negative

-lnlE Eol(e’dk(E ’) <( lnlEo- E’ dk(E’)
Eo dl < lEo- E’I

< ln(IEol + Vllo + 2). l

In the continuous case (1.1), we again use a comparison with the free case. For
E > -II VII o, o(E / VII o)= 0, hence for o such that (4.2) holds,

o < "(Eo)- o(Eo + Vlloo)= flnlEo- E’l(dk(E’) dko(E’ + Vllo)),

Take any E so that [E Eo[ < 1/2, again E ) Eo,

0 < (e’lnlEo E’ dk(E’) + fll lnlE E’[ dk (E’)
V:o < leo- E’I

E’<Eo+

--flE-E’t< llnlE- E’ldko(E’+ Vlloo)

+ fe lnlEo- E’[(dk(E’)- dk(E’ + vIIo)}.
o+l<E

Using that,

Ik(E’)- ko(E’ + Vlloo)l < D(IE’I + 1) 1/2
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we find that

’dk(E) < {lnlEo Ell-I) -1

where/ depends only on lEo] and Vllo,. Thus we have shown

THEOREM 5.2. In the case (1.1), for any a, b > 0 there exists a D such that

-1
Ik(E1)- k(Eo)[ < D {lnIE E01-1}

for all V with VII < a, and all e,eo with E0 < b, le,- e01 <
In [1], Avron-Simon proved pointwise in E convergence of k(E) or f ko(E)dO

in certain situations. By the last two theorems, in all of these situations one has
equicontinuity in E, hence:

THEOREM 5.3. The various pointwise convergence results on k in [1] (as
pequency mo&ls vary) can be replaced by convergence uniform in E as E runs
through compacts.

We want to note a further continuity result"

THEOREM 5.4. In the case where [1]proves pointwise convergence on k, one has

for any E, upper-semicontinuity in r(E).

Remarks. 1. For example, in (1.2), if V.(x)= f(anX + On) with f continuous
on the circle and anna irrational, we claim that limy(En,a.)< y(E,a) if

n.
2. There are examples where limy(E.,an)< y(E,a). For take the case

V.(x) 3f(a.x + On) and E spec(H). We confine O.,E. so E spec(H(an,
On)) [1] and EnE. Then y(E.,an)=O (since H(an,O.) is periodic), but
v(E,a) > ln(3/2)[1].

Proof. 7(E) is continuous for finite l, so we need only use 7(E)
infy2(E).
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