SUBHARMONICITY OF THE LYAPONOV INDEX

W. CRAIG AND B. SIMON*

1. Introduction. There has been intense current interest in a class of one dimensional Schrödinger operators

$$\frac{-d^2}{dx^2} + V_{\omega}(x) \tag{1.1}$$

on $L^2(-\infty,\infty)$ and their discrete analogs on $l^2(Z)$

$$(Mu)(n) = u(n+1) + u(n-1) + V_{\omega}(n)u(n)$$
(1.2)

where the potential V is an ergodic process in the sense that the index ω lies in a probability measure space $(\Omega, d\mu_0)$ which supports a group τ_x ($x \in R$ in case (1.1) or $x \in Z$ in case (1.2)) of measure preserving ergodic transformations with $V_{\omega}(x + y) = V_{\tau,\omega}(x)$, where $\sup\{|V_{\omega}(x)|| x \in R$ or $Z, \omega \in \Omega\} < \infty$. The most heavily studied cases are the "random" ones where τ_x has strong mixing properties (e.g., i.i.d.'s in case (1.2) [8, 3] or Morse functions composed with Brownian motion on a compact manifold in case (1.3) [4, 9, 2]) and the almost periodic case where Ω is a compact metric space and the τ 's are isometric (see [12] for a review of this).

The present paper represents a contribution to this theory. Motivated in part by old work of Thouless [13], and in part by recent work of Hermann [5] (see below), we will prove that a basic quantity is a subharmonic function, and more significantly, derive some important consequence of this observation. Interestingly enough, the fact that certain functions are upper semicontinuous while others are not will play a major role. For this reason, we single out functions which are subharmonic except for semicontinuity:

Definition. A function, f, on C with values in $[-\infty, \infty)$ is called submean if and only if for all $z_0 \in C$ and r > 0 we have that

$$f(z_0) \le (2\pi)^{-1} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$
 (1.3)

For the reader's convenience we recall

Definition. A function f on C is called uppersemicontinuous (u.s.c.) if and only if for any $z_n \to z_\infty$, $\overline{\lim}_{n\to\infty} f(z_n) \leq f(z_\infty)$. Equivalently, if given z_∞ and ϵ we can find δ with $f(z) < f(z_\infty) + \epsilon$ if $|z - z_\infty| < \delta$.

Received September 20, 1982.

^{*}Research partially supported by USNSF under grant MCS-81-20833.

Definition. A function f is called subharmonic if and only if it is submean and u.s.c.

Uppersemicontinuity is singled out because it implies a strong form of the maximum principle. For our purposes it is relevant because:

THEOREM 1.1. If f is subharmonic and z_0 is fixed then

$$f(z_0) = \lim_{r \to 0} (\pi r^2)^{-1} \int_{|z - z_0| \le r} f(z) d^2 z$$
(1.4)

and if f is submean

$$f(z_0) \leq \underline{\lim}_{r \to 0} (\pi r^2)^{-1} \int_{|z-z_0| \leq r} f(z) d^2 z.$$
(1.5)

Proof. (1.5) is an immediate consequence of (1.3). The other half of (1.4) follows by u.s.c. \blacksquare

For the reader's convenience we also recall:

THEOREM 1.2. If $f_n(z)$ is a sequence of submean functions with $\sup_{|z| < R} |f_n(z)| < \infty$ for any R, then $f_{\infty}(z) \equiv \overline{\lim} f_n(z)$ is submean.

Proof. For any *N*, obviously

$$f_n(z_0) \leq (2\pi)^{-1} \int f_n(z_0 + re^{i\theta}) d\theta \leq (2\pi)^{-1} \int \sup_{n \geq N} f_n(z_0 + re^{i\theta}) d\theta$$

so $\sup_{n \ge N} f_n(z_0)$ is submean. By the monotone convergence then, $\inf_N \sup_{n \ge N} f_n \equiv f_{\infty}$ is submean.

THEOREM 1.3. If f_n is a decreasing family of subharmonic functions then $f_{\infty}(z) = \inf_n f_n(z)$ is subharmonic.

Proof. f_{∞} is submean by the last theorem. An inf of u.s.c, functions is u.s.c.

We will also need the following standard theorem (see e.g., [10]):

THEOREM 1.4. If A(z) is an entire matrix valued function, the $\log ||A(z)||$ is subharmonic.

In the context of equations (1.1) and (1.2) define the 2×2 matrix $T_l(\omega, E)$ so that in case (1.1) $T_l(\omega, E)(a, b)$ is (u(l), u'(l)), where u solves (1.1) u = Eu with u(0) = a, u'(0) = b. In case (1.2), let $T_l(\omega, E)(a, b)$ be (u(l+1), u(l)) where u(1) = a, u(0) = b. We define

$$\gamma_l(\omega, E) = |l|^{-1} \ln ||T_l(\omega, E)||.$$

The subadditive ergodic theorem [11] asserts that

552

THEOREM 1.5. $\gamma(E) = \lim_{|l| \to \infty} \int_{\Omega_0} d\mu_0(\omega) \gamma_l(E, \omega) \equiv \inf_l \int d\mu_0(\omega) \gamma_l(E, \omega)$ exists, and for E fixed and a.e. ω , $\gamma_l(\omega, E) \to \gamma(E)$.

 $\gamma(E)$ is called the Lyaponov exponent. Please note the difference between $\gamma(E)$ and $\gamma(E, \omega)$; it is the former, which is an averaged quantity, which is considered in most of this work. Our basic observation, whose consequences we will develop, will appear in section 2:

THEOREM 2.1. $\gamma(E)$ is subharmonic.

A basic consequence will be that if we define

$$\overline{\gamma}(E,\omega) = \overline{\lim_{|l|\to\infty}} \gamma_l(\omega,E)$$

then

THEOREM 2.3. For a.e. ω , we have for all E

$$\bar{\gamma}(E,\omega) \leq \gamma(E).$$

In the almost periodic case, a.e. ω can be replaced by all ω .

Using rather different methods that appear special to the a.p. case, Johnson [6] has proven Thm. 2.3 in the a.p. case.

There is a connection between Theorem 2.1 and the fact that the spectral radius of a Banach algebra valued analytic function is subharmonic. This fact, and related results, are discussed in [14, 15, 16].

In section 3, we will use Thm. 2.3 to prove:

THEOREM 3.2. If a.e. ω , we have that any solution u of (1.1) u = Eu (resp. (1.2) u = Eu) obeys

$$\lim_{|l| \to \infty} l^{-1} \ln \left[|u(l)|^2 + |u'(l)|^2 \right]^{1/2} \ge -\gamma(E)$$
(resp.
$$\lim_{|l| \to \infty} l^{-1} \ln \left[|u(l)|^2 + |u(l-1)|^2 \right]^{1/2} \ge -\gamma(E)$$
).

This result has an important consequence in the Brownian model of random motion. In this model, $(\Omega, d\mu_0)$ is two-sided Brownian motion on a compact Riemannian manifold, M, with Brownian path b(t); f is a Morse function on M and $V_{\omega}(x) = f(b(x))$. In [4], Goldsheid et al. proved that for a.e. ω (1.1) had only (dense) point spectrum and in [9], Molchanov proved that for a.e. ω , every eigenfunction decays exponentially.

In section 4, we simplify the proof of the Thouless formula given by Avron-Simon [1], and prove it for all E, and in section 5, we prove the following theorem on the modulus of continuity of the density of states.

Definition. A function is log-Hölder continuous if for all R, there is a C > 0, such that whenever |x| < R, $|x - y| < \frac{1}{2}$, then

$$|f(x) - f(y)| \le c(\ln|x - y|^{-1})^{-1}.$$

THEOREMS 5.1, 5.2. In both cases (1.1) and (1.2), the integrated density of states is log-Hölder continuous.

The fact that k(E) is uniformly equicontinuous allows us to conclude that whenever k(E) or $\int d\mu_0(\omega) k_{\omega}(E)$ converges pointwise (see Avron-Simon [1]), the convergence is actually uniform on compact sets.

Our realization of the importance of subharmonicity comes from two sources. First, the integral

$$\int \ln|E-E'|\,dk(E')$$

occurs in the Thouless formula, while

$$\gamma_l(E) = \frac{1}{l} \ln \|T_l(E)\|$$

and both these quantities look suggestively subharmonic. Secondly, M. Hermann [5] studied a situation in which $T_l(E, \omega)$ for E fixed was analytic in ω and for which the integrals over $d\mu_0(\omega)$ were averages over the circle, so the submean property was very useful. While semicontinuity played no role in his work, and while he used only subharmonicity in ω , his considerations were extremely useful to us.

It is a pleasure to thank J. Avron for valuable discussions.

2. Basic results.

THEOREM 2.1. $\gamma(E)$ is subharmonic.

Proof. By the inequality $||AB|| \le ||A|| ||B||$, we have that $(l+m)\gamma_{l+m}(E,\omega) \le l\gamma_l(E,\omega) + m\gamma_m(E,T^l\omega)$, so averaging over ω , the quantity $l\gamma_l(E) \equiv \int l\gamma_l(E,\omega) d\mu_0(\omega)$ is subadditive and thus $\gamma(E) = \inf \gamma_{2'}(E)$ and $\gamma_{2'}(E)$ is monotone decreasing. By Thm. 1.4, $\gamma_l(E)$ is subharmonic, so by Thm. 1.5, so is $\gamma(E)$.

THEOREM 2.2. $\overline{\gamma}(E, \omega)$ is submean.

Proof. By Thm. 1.4, $\gamma_l(E, \omega)$ is subharmonic and so submean. Thus, this result follows from Thm. 1.2.

THEOREM 2.3. For a.e. ω , we have that for all E

$$\bar{\gamma}(E,\omega) \leqslant \gamma(E).$$

In the almost periodic case, a.e. ω can be replaced by all ω .

Proof. Fix E. By Thm. 1.5, $\overline{\gamma}(E, \omega) = \gamma(E)$ for a.e. ω , so $\overline{\gamma}(E, \omega) = \gamma(E)$ for a.e. pairs (ω, E) (with respect to $d\mu_0 \times d^2E$). Thus, by Fubini's theorem, for a.e. ω , $\overline{\gamma}(E, \omega) = \gamma(E)$ for a.e. E. In the a.p. case, this holds for all ω (and all E with Im E > 0) by the proof of the Thouless formula (see [1] or section 4 below). If $\overline{\gamma}(E, \omega) = \gamma(E)$ for a.e. E, and E_0 is fixed, we have for any E_0

$$\int_{|E-E_0| \leq r} \overline{\gamma}(E,\omega) d^2 E = \int_{|E-E_0| \leq r} \gamma(E) d^2 E.$$

Divide by (πr^2) and take r to zero. The right side converges to $\gamma(E_0)$ by Thms. 2.1 and 1.1, and the left side is larger than $\overline{\gamma}(E, \omega)$ by Thms. 2.2 and 1.1.

3. Lower bounds on eigenfunction decay. We have already defined $\overline{\gamma}(E, \omega)$. Define $\underline{\gamma}(E, \omega)$ to be lim. Given a solution of (1.1) u = Eu (resp. (1.2) u = Eu) let Φ_l be the two vector (u(l), u'(l)) (resp. (u(l+1), u(l)) and let $\overline{u}_{\pm} \equiv \lim_{l \to \pm \infty} |l|^{-1} \ln ||\Phi_l||$ and $\underline{u}_{\pm} = \underline{\lim}_{l \to \pm \infty} |l|^{-1} \ln ||\Phi_l||$. Then:

THEOREM 3.1. Normalize u, so $||\Phi_0|| = 1$. Then

$$\|\Phi_l\| \|T_l\| \ge 1 \tag{3.1}$$

so that

$$\gamma + \bar{u}_{\pm} \ge 0, \qquad \bar{\gamma} + \underline{u}_{\pm} \ge 0.$$
 (3.2)

Proof. (3.2) follows from (3.1) by taking logs, dividing by l and taking $l \to \infty$ through a suitable subsequence. Let $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. Since T_l has determinant 1 (constancy of Wronskian),

$$\left(JT_lJ^{-1}\right)^t = T_l^{-1}$$

where t is transpose, so since ||J|| = 1, we have that $||T_1|| = ||T_1^{-1}||$. Therefore

$$1 = \|\Phi_0\| = \|T_l^{-1}\Phi_l\| \le \|T_l\| \|\Phi_l\|.$$

As an immediate consequence of this theorem and Theorem 2.3:

THEOREM 3.2. For any solution $u, \underline{u}_{\pm} \ge -\gamma$.

This implies

THEOREM 3.3. For any solution u, if $\bar{u}_{+} \leq -\gamma$ and $\bar{u}_{-} \leq -\gamma$, then $\bar{u}_{\pm} = \underline{u}_{\pm} = -\gamma$ and $\bar{\gamma} = \underline{\gamma} = \gamma$.

Proof. We have $-\gamma \ge \overline{u}_+ \ge \underline{u}_{\pm} \ge -\gamma$ by the last two theorems, and then by (3.2) and Thm. 2.3 $\gamma \le \underline{\gamma} \le \overline{\gamma} \le \gamma$.

In the Brownian model, Carmona [2] has proven that for a.e. ω , we have that for *every* eigenvalue *E*, there is an eigenfunction u_E with $u_{\pm} \leq -\gamma$ (and these

eigenfunctions are complete by [4]). Thus

THEOREM 3.4. In the Brownian model, for a.e. ω and every eigenfunction, eigenvalue pair (u, E) we have

$$\lim_{|l|\to\infty} l^{-1}\ln\|\Phi_l\| \quad and \quad \lim_{|l|\to\infty} l^{-1}\ln\|T_l(E)\|$$

exist; the first equals $-\gamma(E)$ and the second equals $\gamma(E)$.

Remark. We are only asserting $|l|^{-1}\ln||T_l(E)||$ has a limit for all eigenvalues E of $H(\omega)$, not for all E.

4. The Thouless formula. In [13], Thouless discussed a formula relating γ and the integrated density of states, k, in the case (1.2):

$$\gamma(E) = \int \ln|E - E'| \, dk(E'). \tag{4.1}$$

Thouless' proof was formal at some points, and as noted by Avron-Simon [1], there are examples where the spectral measure of M_{ω} is supported on the set of Efor which either $\bar{\gamma} \neq \gamma$ or $\bar{\gamma}(E, \omega) \neq \int \ln|E - E'| dk(E')$. They give a rigorous proof for (4.1) for a.e. E using some functional analytic gymnastics. The first step is that there is a sequence of measures on (-A, A) with $A = 2 + ||V||_{\infty}$, called k_l , with $|dk_l \rightarrow dk$ weakly (a.e. ω in the general case, *all* ω in the a.p. case) with

$$\gamma_l(E,\omega) = \int \ln|E - E'| \, dk_l(E').$$

If $E \notin [-A,A]$ (*E* may be complex), the $\ln|E - E'|$ is continuous for $E' \in [-A,A]$ and (4.1) follows. The gymnastics in [1] were required to handle $E \in [-A,A]$. To give a simpler proof, we note:

LEMMA 4.1. Define

$$\int \ln|E-E'|\,dk(E')$$

by the convention that it is $-\infty$ if the integral diverges to $-\infty$. Then it is a subharmonic function.

Proof. $\ln|\cdot - E'|$ is subharmonic, so the expression is clearly submean. For a > 0, define

$$f_a(E) = \int \max\{\ln|E - E'|, -a\} dk(E').$$

Then f_a is continuous and the expression is just $\inf_{a>0} f_a(E)$ by the monotone convergence theorem. Thus the expression is upper semicontinuous.

A corollary of Thm. 1.1 is that if the subharmonic functions agree a.e. in the complex plane, they agree everywhere. Thus, knowing (4.1) for $\text{Im } E \neq 0$ (which is easy, see [1]), we find that by combining Lemma 4.1 with Thm. 2.1:

556

THEOREM 4.2. (4.1) holds for all E.

In the continuous case (1.1), one must compare $\gamma(E)$ with the free Lyaponov exponent $\gamma_0(E)$. Define, for $E \in \mathbb{C}$, $\gamma_0(E) = \operatorname{Re}(\sqrt{-E})$, where the branch is chosen so that $\sqrt{-E} > 0$ for E < 0. Let $k_0(E) = (1/\pi)\sqrt{\max\{0, E\}}$. It is shown in [1] that for $\operatorname{Im} E \neq 0$

$$\gamma(E) - \gamma_0(E) = \int \ln|E - E'| \{ dk(E') - dk_0(E') \}.$$
(4.2)

The integral on the right is conditionally convergent in the sense that it is proven that

$$\lim_{a\to\infty}\int_{-\infty}^a \ln|E-E'|\,d(k-k_0)(E')$$

exists and is finite if $\text{Im } E \neq 0$. Similarly, we find

$$\gamma(E) - \gamma_0(E+a) = \int \ln|E - E'| \{ dk(E') - dk_0(E'+a) \}.$$
(4.3)

The integral $\int_a^{\infty} \ln|E - E'| \{ dk(E') - dk_0(E' + a) \}$ is harmonic on $C - [a, \infty)$, hence if the integral in (4.3) is defined to be $-\infty$ whenever it diverges to $-\infty$, then the right side is subharmonic on $C - [a, \infty)$. As before, this establishes (4.3) and then (4.2) for all E.

The Thouless formula for all E implies several general principles:

(a) Since $\ln|E - E'|$ is harmonic away from E', and $\operatorname{supp}(dk) = \operatorname{spec}(H_{\omega})$ we see that $\gamma(E)$ is harmonic away from $\operatorname{spec}(H_{\omega})$.

(b) Using (a), Johnson [6] proves in the a.p. case that for any open interval $I \subset R$, either $I \cap \operatorname{spec}(H_{\omega})$ is empty or it has strictly positive logarithmic capacity. Using his proof and our arguments to establish (a), this result is true in the general ergodic case.

(c) Since γ is u.s.c. and nonnegative, at points with $\gamma(E) = 0$ (necessarily this implies that $E \in \operatorname{spec}(H_{\omega})$ [1]), γ is continuous.

(d) Since $\ln|E + i\epsilon - E'|$ decreases monotonically to $\ln|E - E'|$ as $\omega \downarrow 0$ (when E, E' are real), we see that for any real $E, \gamma(E) = \lim_{\epsilon \downarrow 0} \gamma(E + i\epsilon)$. This is how Johnson [6] *defines* γ for E real. (He doesn't appear to note that γ defined this way is the a.e. Lyaponov exponent.)

(e) If E < E', then $\ln|E - \epsilon - E'|$ converges monotonically to $\ln|E - E'|$ and if $E' < E - \epsilon_0$, then as $\epsilon \downarrow 0$, $\ln|E - \epsilon - E'|$ is bounded, so if (a, b) is disjoint from spec (H_{ω}) but $b \in \text{spec}(H_{\omega})$ we have that $\gamma(b) = \lim_{\epsilon \downarrow 0} \gamma(b - \epsilon)$. This is a result of Johnson [6] in the a.p. case.

5. Log-Hölder continuity of the integrated density of states. In [1], [7], it is a basic result that k(E) is a continuous function of E, but the proof gives no estimate on the modulus of continuity. We want to note that the Thouless formula combined with the nonnegativity of γ implies a continuity of k which is uniform for E in compact sets and uniform in V as V runs through sets with

 $||V||_{\infty}$ bounded. We consider both the case where k(E) is the density of states and the case where we average over an auxiliary parameter such as occurs for $V(n) = \cos(2\pi\alpha n + \theta)$ where α is *rational* and θ is averaged. The proof of log-Hölder continuity is identical in these two cases, but the discrete case (1.2) is slightly different from the continuous case (1.1); they are treated in Theorems 5.1 and 5.2 respectively.

THEOREM 5.1. In case (1.2) let E_0 and E_1 be real with $|E_0 - E_1| < \frac{1}{2}$. Then

$$|k(E_1) - k(E_0)| \le \ln[|E_1| + |E_0| + ||V||_{\infty} + 2]/\ln\{|E_0 - E_1|^{-1}\}.$$

Proof. Without loss of generality, assume $E_1 > E_0$.

$$0 \leq \gamma(E_0) = \int \ln|E_0 - E'| dk(E')$$

= $\int_{E_0}^{E_1} \ln|E_0 - E'| dk(E')$
+ $\int_{\substack{|E_0 - E'| \leq 1 \\ \{E' < E_0\} \cup \{E_1 < E'\}}} \ln|E_0 - E'| dk(E') + \int_{1 \leq |E_0 - E'|} \ln|E_0 - E'| dk(E').$

Hence, since the second integral is negative

$$-\ln|E_{1} - E_{0}| \int_{E_{0}}^{E_{1}} dk(E') \leq \int_{1 \leq |E_{0} - E'|} \ln|E_{0} - E'| dk(E')$$
$$\leq \ln\{|E_{0}| + \|V\|_{\infty} + 2\}. \quad \blacksquare$$

In the continuous case (1.1), we again use a comparison with the free case. For $E > - \|V\|_{\infty}$, $\gamma_0(E + \|V\|_{\infty}) = 0$, hence for ω such that (4.2) holds,

$$0 \leq \gamma(E_0) - \gamma_0(E_0 + ||V||_{\infty}) = \int \ln|E_0 - E'| \{ dk(E') - dk_0(E' + ||V||_{\infty}) \}.$$

Take any E_1 so that $|E_1 - E_0| < \frac{1}{2}$, again $E_1 > E_0$,

$$0 \leq \int_{E_0}^{E_1} \ln|E_0 - E'| dk(E') + \int_{\substack{1 \leq |E_0 - E'| \\ E' \leq E_0 + 1}} \ln|E_0 - E'| dk(E') - \int_{|E_0 - E'| < 1} \ln|E_0 - E'| dk_0(E' + ||V||_{\infty}) + \int_{E_0 + 1 < E'} \ln|E_0 - E'| \{ dk(E') - dk(E' + ||V||_{\infty}) \}.$$

Using that, [1]

$$|k(E') - k_0(E' + ||V||_{\infty})| \le D(|E'| + 1)^{1/2}$$

we find that

$$\int_{E_0}^{E_1} dk(E) \le \tilde{D} \left\{ \ln |E_0 - E_1|^{-1} \right\}^{-1}$$

where \tilde{D} depends only on $|E_0|$ and $||V||_{\infty}$. Thus we have shown

THEOREM 5.2. In the case (1.1), for any a, b > 0 there exists a D such that

$$|k(E_1) - k(E_0)| \le D \{ \ln |E_1 - E_0|^{-1} \}^{-1}$$

for all V with $||V||_{\infty} < a$, and all E_1, E_0 with $E_0 < b$, $|E_1 - E_0| < \frac{1}{2}$.

In [1], Avron-Simon proved pointwise in E convergence of k(E) or $\int k_0(E) d\theta$ in certain situations. By the last two theorems, in all of these situations one has equicontinuity in E, hence:

THEOREM 5.3. The various pointwise convergence results on k in [1] (as frequency models vary) can be replaced by convergence uniform in E as E runs through compacts.

We want to note a further continuity result:

THEOREM 5.4. In the case where [1] proves pointwise convergence on k, one has for any E, upper-semicontinuity in $\gamma(E)$.

Remarks. 1. For example, in (1.2), if $V_n(x) = f(\alpha_n x + \theta_n)$ with f continuous on the circle and $\alpha_n \to \alpha$ irrational, we claim that $\overline{\lim} \gamma(E_n, \alpha_n) \leq \gamma(E, \alpha)$ if $E_n \to E$.

2. There are examples where $\overline{\lim} \gamma(E_n, \alpha_n) < \gamma(E, \alpha)$. For take the case $V_n(x) = 3f(\alpha_n x + \theta_n)$ and $E \in \operatorname{spec}(H_\alpha)$. We confine θ_n, E_n so $E_n \in \operatorname{spec}(H(\alpha_n, \theta_n))$ [1] and $E_n \to E$. Then $\gamma(E_n, \alpha_n) = 0$ (since $H(\alpha_n, \theta_n)$ is periodic), but $\gamma(E, \alpha) \ge \ln(3/2)$ [1].

Proof. $\gamma_l(E)$ is continuous for finite *l*, so we need only use $\gamma(E) = \inf_n \gamma_{2^n}(E)$.

References

- 1. J. AVRON, AND B. SIMON, Almost periodic Schrödinger operators, II. The integrated density of states, Duke Math. J. 50 (1983), 369–391.
- R. CARMONA, Exponential localization in one dimensional disordered systems, Duke Math. J. 49 (1982), 191–213.
- 3. F. DELYON, H. KUNZ AND B. SOUILLARD, One dimensional wave equations in disordered media, Ecole Polytechnique preprint.
- 4. I. GOLDSHEID, S. MOLCHANOV AND L. PASTUR, A pure point spectrum of the stochastic one dimensional Schrödinger equation, Func. Anal. Appl. 11 (1977), 1-10.
- 5. M. HERMANN, A method for majorizing the Lyaponov exponent and several examples showing the local character of a theorem of Arnold and Moser on the torus of dimension 2, Ecole Polytechnique preprint.
- 6. R. JOHNSON, Lyaponov exponents for the almost periodic Schrödinger equation, U.S.C. preprint.

- 7. R. JOHNSON AND J. MOSER, The rotation number for almost periodic potentials, Comm. Math. Phys. 84 (1982), 403-438.
- 8. H. KUNZ AND B. SOUILLARD, On the spectrum of random finite difference operators, Comm, Math. Phys. 76 (1980), 201-246.
- 9. S. MOLCHANOV, The structure of eigenfunctions of one dimensional unordered structures, Math. USSR Izv. 12 (1978), 69–101.
- 10. R. NEVANLINNA, Analytic Functions, Springer, 1970.
- 11. V. I. OSCELEDEC, A multiplicative ergodic theorem. Lyaponov exponents for dynamical systems, Trudy Mosk. Mat. Obsc. 19 (1968), 679.
- 12. B. SIMON, Almost periodic Schrödinger operators: A review, Adv. Appl. Math., to appear.
- 13. D. THOULESS, A relation between the density of states and range of localization for one dimensional random systems, J. Phys. C5 (1972), 77–81.
- 14. B. AUPETIT, Proprietes spectrales des algebres de Banach, Springer Lecture Notes in Mathematics, 735, 1979.
- 15. J. D. NEWBURGH, The variation of spectra, Duke Math. J. 18 (1951), 165-176.
- 16. E. VESENTINI, On the subharmonicity of the spectral radium, Boll. Un. Mat. Ital. 4 (1968), 427-429.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91125.

SIMON ALSO AT DEPARTMENT OF PHYSICS.