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For a dense G, of pairs (,I, a) in R’, we prove that the operator (Hu)(n) = 
u(n + 1) + u(n - 1) + I cos(2nan + 0) u(n) has a nowhere dense spectrum. Along 
the way we prove several interesting results about the case a =p/q of which we 
mention: (a) If  qB is not an integral multiple of A, then all gaps are open, and (b) If  
q is even and 0 is chosen suitably, then the middle gap is closed for all I.. 

1. INTRODUCTION 

Recently, there has been an explosion of interest in the study of 
Schrijdinger operators and Jacobi matrices with almost periodic potential 
(see, e.g., the review [ 161). The general belief is that generically the spectrum 
is a Cantor set, i.e., a nowhere dense perfect, closed set. Since it is easy to 
prove that the spectrum is closed and perfect (see, e.g., [2]), the key is to 
prove that the spectrum is nowhere dense. This is definitely not always true: 
There are very special finite gap potentials, i.e., V’s for which 
-d’/du* + V(X) has a spectrum which is the finite union of closed intervals 
[6]. For the special class of limit periodic potentials, Chulaevsky [5], Moser 
[ 131 and Avron and Simon [2] have proven that generically (in the sense of 
dense G6) the spectrum is nowhere dense. Our goal in this paper is to prove 
that the spectrum is nowhere dense for another special class of potentials, 
specifically for the operators on I,, 

(Hu)(n) = u(n + 1) + u(n - 1) + 1 cos(2?ran + 6) u(n), (1) 
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where 1, a, 13 are parameters which label distinct H’s (1) is called the almost 
Muthieu equation because of its similarity to the Mathieu equation on L’, 

(H#)(X) = -u”(X) + 2L cos(2x) u(x). (2) 

Our main goal in this paper is to prove (solving, at least in a weak sense, 
“the ten martini problem” of [ 161) 

THEOREM 1. For a set of pairs (A, a) in R 2 which is a dense G, , (1) has 
a nowhere dense spectrum. 

We caution the reader that in the context of rational approximation, the 
two notions of “generic,” namely, dense G, and full measure, are often 
distinct. For example, S = {a E [0, 1 ] ] ] a -p/q I> Cqek some C, k} has 
measure 1 but its complement is a dense G, ! The a’s in our proof will be 
precisely those sufficiently well approximated by rationals and indeed the 
proof is so soft that we do not even have any estimates that tell us how well 
approximated a needs to be; we exploit the Baire category theorem to 
guarantee that the a’s remaining are dense and uncountable. 

For the Mathieu equation (2), it is an ancient result that every gap allowed 
by the theory of periodic potentials is open. For this reason, one may well 
expect that all the gaps allowed (in a sense we will make precise below) in 
the almost Mathieu equation are there. One of the results we prove in 
Section 3 partly supports this, viz., 

THEOREM 2. If a =p/q is rational and eq/a is not hn integer, then all 
gaps of (1) are open for all A# 0, i.e., the spectrum consists of exactly q 
disjoint closed intervals. 

However, Section 3 will also show that 

THEOREM 3. If a = p/q with q even and p odd and 0 = O[resp. n/q] if 
q = O(mod 4) [resp. q = 2(mod 4)], then one gap of (1) is closed for all 1. 

We find this result doubly surprising, because first it is contrary to the 
intuition from the Mathieu equation and because it seems very likely that a 
single closed gap for V fixed and all I cannot occur in the Schrodinger case. 

An important notion in our considerations is the ids (=“integrated density 
of states”), k(E), discussed from distinct viewpoints in [ 3, 4, 121. On any gap 
of spec(H), k(E) is constant, and we will prove Theorem 1 by showing that 
for any open interval J, {(a, A)( spec(H(a, A)) has a “gap” where k(E) E J} is 
a dense open set. The word “gap” is in quotations since for a rational, gap is 
defined in a different way than usual (see Section 2). In Section 2, we prove 
that the set in question is open, and in Sections 3 and 4 that for any a =p/q 
rational, with q sufficiently large, (A] spec(H(a, A)) has a “gap” where 
k(E) E J) is dense in R. 
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It is a result of Bellissard et al. [4] ( see also Johnson and Moser [ 121 for 
the Schrodinger case) that in any gap for (1) (or any a.p. Jacobi matrix), the 
value of k(E) in a gap is always (ma), where ( ) = fractional part of. and m 
is an integer. We believe that for a dense G, of (a, A), one has that for every 
m # 0, there is a gap where k(E) = (ma). In Section 5, we describe briefly 
why we have not succeeded in various ways of trying to prove this stronger 
theorem. 

We note that Hofstader [9] has pictures of spec(H(a, A)) for 0 = 0, i = 2 
and a =p/q computed numerically. The resulting picture shows Cantor 
behavior quite clearly. This is actually a very special picture; there is 
numerical evidence [ 171 that for A = 2 and a irrational, spec(E?(a, A)) has 
measure 0. 

2. REDUCTION TO THE RATIONAL CASE 

For any a, 1 fixed, we define 

S(a, A) = iJ spec(H(a, A, Q), 
e 

where H(a, 1, t9) is the operator of (1). It is not hard to see that S is closed. 
For a irrational spec(H(a, II, 19)) has no e-dependency but there is nontrivial 
6’ dependence for a rational. The integrated density of states k(E; a, 1,0) has 
nontrivial dependence on 0 for a rational and general E but 

LEMMA 2.1. If (a, b) is disjoint from S(a, A), then k(E; a, L, 0) is the 
same for all 0 and all E E (a, b). 

ProoJ: Let a =p/q be rational. (a, b) must lie in a gap for each 
H(a, A; t9) (0 E (0,2x)), and so on (a, b), k(E; a, A, 0) is independent of E 
and has a value m/q with m = 0, I,..., q. Since k is also continuous in 8 for E 
fixed (see [3]), this quantization of values implies that k is constant. 
Independence in 0 for a irrational is true for any E[3]. 1 

This lemma says that it makes sense to talk about the value of k(E) in a 
gap of S(a, A). For any rational a < b we define 

A,,, = {(a, A)1 %a, 1) h as a gap on which a < k(E) < b}. 

In this section we will show 

THEOREM la. A,,, is open 

and in Section 4 that 
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THEOREM lb. A,,, is dense if (a, b) n [0, l] f 4. 

Thus n A a<brational n,b is a dense G, by the Baire category theorem. 
Theorem 1 follows from Theorems la and b and 

LEMMA 2.2. If (a, A) E &b Ao,b, then spec(Z-f(a, A)) is nowhere dense. 

Remark. Because of the mentioned discrete quantization of k(E) on gaps 
where a is rational, (a, A) E n,,, A,,, implies that a is irrational, so 
spec(H(a, 2)) is independent of 8. 

Proof: Let E E spec(f-Z(a, 1)). Then, by general principles [3], k(E) is 
non-constant in every interval (E - 6, E + S), so for every such interval, we 
can find a, b rational with k(E - 6) < a < b < k(E + 6) and 0 < a < b < 1. 
Since spec(H(a, A)) has a gap where k E (a, b), there is a gap in 
(E - 6, E + 6). 1 

To prove Theorem la we require the following result of Avron and Simon 
[3] (Elliott [7] has independently obtained a related result): 

LEMMA 2.3 [3, 71. Let a,+ a, A,,+ 1,E,+E and suppose E, E 
S(a, ,A,). Then E E S(a, A). 

For completeness, we sketch the proof of this Lemma at the conclusion of 
this section. 

Proof of Theorem la. Let (a, A) E A,,,. Then there exist (e,, e,) c 
R\S(a, A) and k(E) E (a, b) for e, < E < e,. Pick e; and e,l with e, < e6 < 
e; < e,. By Lemma 2.3, for (a’, A’) sufficiently near to (a, A), we must have 
[e;, e; ] c R\S(a’, A’). For all such (a’, A’), k(e6 ; a’, A’, 0) is independent of 
8 (by Lemma 2. l), so since l d0 k(e;, a’, I; 19) is continuous, 
k(e6 ; a’, A’) E (a, b) for (a’, 2’) near (a, A). Thus, for (a’, 1’) near (a, A), we 
have (a’, A’) E Aa,b, i.e., A,,, is open. 1 

We will prove Theorem lb by finding enough (a, 1) with a rational lying 
in A,,,. Thus we have succeeded in reducing things to the rational case 
which we study in the next two sections. 

Sketch of the Proof of Lemma 2.3 vollowing Avron and Simon [3]) 

(1) By the standard Floquet analysis of the periodic case, if a is 
rational, and E E spec(H(a, I, t9)), then Hu = Eu has a bounded solution. 

(2) If a is irrational and E E spec(H(a, A)) we can find a, rational 
and E, + E with E, E spec(H(a,, 1,8 = 0)) since spectrum cannot suddenly 
appear under strong limits. By using (1) and shifting 8 from 0 to a suitable 
point, we find u, with ]]u& < 1 and u,(O) = 1 so H(a,, A, 0,) u, = E,u,. 
Taking limits (8, has a limit point, 8,, by compactness of the circle) we find 

saof48p9 
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a function u with u(0) = 1 = ]]I(](, and H(a, A., 0,) u = Eu. Thus, if 
E E spec(H(a, A)) we have a bounded solution of HU = Eu for some 0. 
(Remarks: (2) is a quick proof of a result originally proven by Johnson 
[lOI*) 

(3) If E, E S(a,, A,), then by (2) there is u,, and 8, so 
H(a,,&,Qu,=E u n ,,. By shifting 8, we can suppose u,(O) = f, I] u,]I, < 1 
and then by taking a suitable limit point of 8 and u, H(a, A,@ u = Eu with 
$]I-,; $trd u & 0. If u E L’, then.obviously E E spec(H(a, A, 0)) c S(a, A). 

let u,(n) = u(n) (tf 1 nl< m), = 0 (if 1 nl > m). Then 
[(H-E)ub](n)=O ( un ess 1 n = MZ, k(m + 1)) and so II(H- E) u,(I is 
bounded as m -+ co. Since ]I u,I] --) co as m -+ co, 1) (H-E) u,,,ll/ll u,II -+ 0 so 
E E spec(H(a, 1, t9)) c S(a, A). Thus E E S(a, A), i.e., Lemma 2.3 is 
proven. I 

3. ANALYSIS OF THE RATIONAL CASE. I: DEPENDENCE ON 0 

In the analysis of periodic Jacobi matrices, a basic role is played by the 
discrete analog of the discrimant, i.e., given V(n) of period q, we set 

f(E)=Tr 

K 

E - V(0) -1 E- V(1) -1 
1 o 1 0 

we usef,,,,,(E, 8) for this object when V(n) = 1 cos(27cpq-‘n + 0). The basic 
fact we will require to analyze 8 dependence is 

THEOREM 4. Let p and q be relatively prime. Then 

fp,q,,dE, 8 = gp,q,AE) + 2(-VV c0+9. (3) 

Proof: Since V(j) = 1/2[e2”‘“jeie + e-2niaie-i0], f is obviously a 
polynomial in eie and ePie of degree at most q. By cyclicity of trace, f is 
invariant under the transformation, 8-+ 8 + Znp/q. Since p and q are 
relatively prime, this implies thatfmust have a Fourier expansion containing 
only eime with m = 0 (mod q). Thus 

f,,,.,(E) = gp,,,A@) + h+.,dE) eiqe + b,,JE) epiqe. 

But, since each matrix has only one piece of order eie or of order eeie, it is 
easy to read off the terms h, . g 

Recall the basic facts about how f(E) behaves and how it relates to 
spec(H) (see [ 151 but note that since --A is approximated by 
-u(n + 1) - u( - 1) + 2u(n), the sign of E is opposite here to that in [ 151). 
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For E very large, f + +co. As E decreases, f(E) passes through the value 2, 
down to where its value is -2. It is strictly monotone on the interval where 
-2 < f(E) < 2. Call E,, the maximal point where f(E) = -2. It can happen 
that f’(E,) = 0, in which case we say the top gap is closed and then just 
below E,, f increases monotonically as E decreases until it reaches +2. If 
f’(E,) # 0, then eventually as E is decreased there is a next point E, with 
f(E,) = -2 and we say the top gap is (E2, E,). Below E,,f is initially 
monotone till we reach the next point where f(E) = 2. This repeats so that 
there are points 

so that the only points where f(E) = 2 are precisely the points E, with 
1~ 0, 3(mod 4) and the only points where f(E) = -2 are the E, with 
1~ 1,2(mod 4). If I= 1 [resp. 31 (mod 4(, then f(E) < -2 [resp. f(E) > 21 
on (E,+l, E,) and if I= 2 [resp. 0] (mod 4), then on (E,, 1, E,), f lies in 
(-2,2) and f is strictly monotone increasing [resp. decreasing] as E 
decreases. The spectrum is precisely lJg:d [Ezj+ r, Ezj] and the “Zth gap” is 
(E,,_,,,E,,-,,-,)~dl(l= l,... ;q-1). IfEZq-2,=E2q--2,-,, we say the Zth 
gap is closed. On the Ith gap k(E) has the value Z/q. 

A critical fact is that all the critical points off occur in regions where 
If(E)I>2. We th ere ore f have that all the critical points of the function g of 
(3) have 1 g + 2(-L/2)q cos(q@[ > 2 for all 0, and thus 

LEMMA 3.1. All the critical points of g occur when 1 g(E)1 > 
2 + 21-9(A14. 

We are now prepared for 

Proof of Theorem 2. For a gap to be closed, fp,q(., 0) must have a 
critical point where 1 f ] = 2, so g must have a critical point where ] g(E)1 = 
2 + 21Pq ]A] cos(q0). By the lemma, this can only happen if qt3/7c is an 
integer. I 

The gaps are determined by where the lines y = f2 - 2(-J/2)” cos(q8) 
intersect the curve g(E) =y. Depending on the value of (-L)q/lL lq, the lines 
move up or down as 8 varies. The gaps open or close at both sides of a gap 
as the lines move up or down (if we look at the -2 - . m. line and down or up 
if we look at the +2 - . . . line). The minimal gap occurs at an extreme value 
of 0; either 0, z/q. Thus 

PROPOSITION 3.2. (a) If q is even or q is odd and ;1 > 0, then the gaps 
for 1 = 1, 3,... have the property that 0, A,(B) = A,(O) and for Z = 2,4,... 
Cl o A,(e) = A,(h). 
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(b) If q is odd and I < 0, then the gaps for 1= 1,3,... have the 
property that fi, A,(8) = A,(z/q) and for I = 2,4,... 0, A,(@ = A,(O). 

Note. After completing this work, we received a preprint from Herman 
[ 181 which also states and proves Theorem 4. 

4. ANALYSIS OF THE RATIONAL CASE, II: LARGE A 

Our primary goal in this section will be to prove 

THEOREM 5. Fix q odd and 19 = 0 or x/q. Then for suflciently large /II, 
all gaps A,( 0), 1 = I,..., q - 1 are open. 

Remark. By Aubry duality, the result is also true for 1J1 sufficiently 
small. 

Assuming this result, we conclude the proof of Theorem 1 by 

Proof of Theorem lb (see Section 2). We will show that for a dense set 
of pairs (a, L) with a =p/q, we have 0, A,(O) # Q for an I with Z/q E (a, 6). 
Fix any p/q with q odd, p relatively prime to q and q so large that for some 1 
among l,..., q - 1, l/q E (a, b). Since the set of p/q is dense, we need only 
show {A] 0, A,(O) # 4) is dense. But, by Proposition 3.2, for 0, = 0 or x/q 
appropriately, this is just {Al A,(O,) # #}. The set of Iz for which this gap is 
closed is given by the vanishing of an analytic function (the difference of two 
eigenvalues which can only cross each other and no other eigenvalues) and 
by Theorem 5 this function has no zeros for ]A 1 large and real. Thus the set 
of possible bad L’s is finite and thus its complement is dense as we 
required. I 

Our calculation for ;1 large is essentially a perturbation calculation made 
easier by the fact that it is very similar to one done by Avron and Simon [ 11, 
who in turn relied on the realization that they had a “tunnelling” problem (as 
we do) so that certain ideas of Harrell [8] can be used. As a preliminary, we 
note 

LEMMA 4.1. It suflces to prove Theorem 5 for the case 8= 0 and 
I = 1, 3 )...) q - 2. 

Proof. The transformation u(n) to (-l)%(n) maps H, (the operator (1) 
where 1 = 0) to --Ho and commutes with potentials, and so it takes 
H, + L cos(2xan) to -(Ho - L cos(2nan)) and thus the gaps A,, A, ,..., A,-, 
for the case A, 8 = 0 and those d, ,..., Jq-i for -II, 8 = 0 are related by 
A, =d”-( and so control of A, ,..., A,-, for both 1 and -I yields control of 
A A 2 ,***, 4-, (put in physicists’ language the gaps for 1 odd are determined by 
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periodic B.C. and those for 1 even by antiperiodic B.C. u(n).++ (-l)“u(n) for 
q odd interchanges the two types of B.C.). 

Since q and p are relatively prime, we can find A and B integers with 
pA + qB = 1. By changing (A, B) to (A - q, B + p) we can suppose that A is 
even in which case B must be odd. The translation n + n + iA takes 
cos(27ran) to cos(2nan + n( 1 - qB)/q) = - cos(2nan + zqq-‘) since B is odd. 
Thus, the operator with 1, 0 = z/q is unitarily equivalent to that for -1, 
0 = 0 so we need only study that case. 1 

We now use the fact that a closed gap whenf(E) = 2 can only occur if an 
eigenvalue of the problem (1) with periodic B.C., i.e., u(n + q) = u(n) is 
degenerate. Theorem 5 is thus reduced to 

PROPOSITION 4.2. Fix q = odd and take 0 = 0. Then all suflciently large 
A, the eigenvalues of Eq. (1) with the boundary condition u(n + q) = u(n) are 
non-degenerate. 

Proof: Instead of (1) we study 

cos(2xan) u(n) + I-‘(u(n + 1) + u(n - 1)) = E(A-‘) u(n). (1’) 

One notes that for 1-l = 0, this equation has many doubly degenerate eigen- 
values and we need only show that for 1-l # 0 and small this degeneracy is 
broken. Note also the symmetry which is preserved by the boundary 
condition n + -n. Thus, for any A, we can look at even and odd eigenvalues. 
Suppose q = 2k + 1. Then for A = 0 we have eigenvalues E,(O) z cos(2nal), 
I= 0, l,..., k. For If 0, there are two eigenvalues E:(L) near E,(O) whose 
eigenfunctions u:(A; n) obey u:(A, -n) = *u:(A, n). We must show 
Et -E; # 0 for all 1-l # 0 and small and each 1. We use the following 
device borrowed from [ I] (a discrete version of an idea of [ 81): multiply (1’) 

for E+ by u-(n), and subtract the product of (1’) for E- by u+(n) and sum 
from n E 0 to n = k: 

E: -E; (5 u:@, k) u;(A, k)) =A-‘[u,f(A, 0) u;@, 1) 
0 

+ 2u:(A, k) #;(A, k)], (4) 

where we use the fact that the sum on the right telescopes and we have used 
u;(A, 0) = 0, u;@, -1) =--Id;@, l), u:(l, k + 1) = $(I, -k) = u,+(& k). 
We can normalize u: by requiring u:(A, 1) = 1, so that by an elementary 
application of perturbation theory, 

U./y& m) = s,,, * a-,,, + O(l-‘). (5) 
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Thus the left side of (4) is (E: - E;)(l + O(A - ‘)). Look at the eigenvahe 
equation (1’) at m = 1 f 1. By (5), we find 

u:(n,f f 1)=A-‘(E,(O)-E,+,(O))-’ +O(A-‘), (6) 

where we have used E,(A) = E,(O) + O(A - ‘). The equation at m # 1, 1 f 1, 
shows 

24: (A, m) = O(A’), m # *l, +(I + l), f(l- 1). 

This argument is easily iterated. The result is 

u:(n, m) = a/+,(A-ym’ + O((rym’+‘) 

for m = 0, l,..., k, where 

a,f, = a,, # 0 if m # 0, 

Thus the two terms on the right of (4) are c,A-~’ + O(A-‘2’+“) and 
c 

2 
12/-2k-1 + o(-21-2k-2 ) with c1 # 0 # c2. Since 21 is even and 2k + 1 - 21 

is odd, the two terms cannot cancel and thus the right side of (4) is non-zero 
for 1-l small. I 

The same argument would work for q even (but we have to check it 
separately for 0 = 0 and 8 = r/q and separately for periodic and antiperiodic 
B.C.) except that for one gap, the two terms that occur on the right side of 
(4) have the same order so there might be a cancellation. In fact, when we 
examined the case q = 4, we were somewhat surprised to discover by explicit 
calculation that this gap was permanently closed. This led to our discovering 
Theorem 3 whose proof we now give. 

Proof of Theorem 3. The closed gap is the one with I = iq, i.e., the 
“middle” gap. Indeed, we will show that E, _, = E, = 0 in the language of 
Section 3. Consider first the case q = O(mod 4) and 0 = 0. The relevant 
boundary conditions are periodic. There are two subspaces V* where 
u(m) = +u(-m) and since 0 and f(+q) (which are equivalent mod q) are left 
invariant by m + -m, dim(P) = fq + 1, dim(V) = jq - 1. Both are odd. 
Consider the covariance Lemma 4.1. u(m) --, (-l)“%(m) now leaves periodic 
B.C. invariant and takes H,, + 1 cos(27ran) to -H, + L cos(2wan). Trans- 
lating n by q/2 and using the fact that p is odd cos(2nan)+ 
cos(27ran + rp) = -cos(2nan) so by combining the two transformations, we 
see that iYO + A cos(2nan) with periodic B.C. is unitarily equivalent to its 
negative. Moreover, both transformations and thus their composition leave 
V* invariant. Since both subspaces are odd dimensional, the middle eigen- 
value on each must be 0. 
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Consider next the case q = 2(mod 4), 19 = n/q. By a suitable translation, 
this is equivalent to looking at (1) with 8 = 0, but where n now takes the 
values *f, *{,.... In this realization, define V* as before; they each have 
dimension $4 which is odd. The same transformation as above shows 
H f V+ and H r V- are each unitarily equivalent to their negatives and 
again their middle eigenvalues are 0. I 

5. ATTEMPTS AT A STRONGER THEOREM 

We would like to prove a stronger result than Theorem 1, namely (recall- 
(x) = fractional part of the real number x), 

Conjectured result. For each integer m # 0, there exists a dense open set 
A,,, of pairs (12, a) so that if (A, a) E A,,,, then S(a, 1) has a gap in which 
k(E) = (ma). 

In this final section, we briefry describe some ideas connected with this 
conjecture. Given our approach above, the natural approach is to do two 
things: 

(a) Associate an integer, m, to a gap in S(a, 2) so that k(E) = (ma) in 
the gap and so that the gap in S(a’, A’) which is there for ] a - a’ 1 + IA - 1’ 1 
small has the same m associated to it. 

(b) For rational a =p/q, and L so all gaps are open, prove that the 
gaps at k(E) = I/q have the associated m with m = fl, *2,..., k[fq] if q is 
odd. 

The main problem is to verify (b). For suppose we succeed in (a) but there 
is never a gap with m = +l. This could happen if the gap with k(E) =p/q 
has m = q + 1 rather than 1. The two approaches we have tried follow. 

K-theory approach. If for all (a, A) near (a,,, A,) there is a gap containing 
(E, - 6, E, + 6) we findf; a continuous function which is 1 on (-co, E, - 61 
and 0 on [E, + 6, co). Then f(H(a, 2)) is, for (a, 1) near (a,,, A,,), a 
projection in the C*-algebra M, associated to that a and tr,df(ZY(a, A))) = 
(ma) by the basic results of K-theory [ 141. (This is how Bellissard et al. [4] 
prove the gap labeling theorem.) There is an explicit formula for m which 
one can show is continuous in (a, I) so (a) can be proven. However, we do 
not see how to verify (b), that is, to show the possibility we describe after (b) 
does not occur. 

Homotopy approach. We have another approach that is connected with 
an argument that Johnson [ 111 used as an alternate proof of the gap labeling 
theorem in the continuous case. If E 6Z U S(a, A), then for any 0, there is a 
unique point in M’(l), the set of pairs (a, b) modulo multiplication by 
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constants, so that the solution of (Hu)(n) = Eu(n) with (u(O), u( 1)) = (a, b) 
decays as n --+ + co. The point p(0) in RP( 1) is easily seen to be continuous 
in 19. The map p has a winding number Z. rii is easily seen to be independent 
of E as E varies in a gap and to be continuous in (a, A) as long as a gap 
persists. On the basis of Johnson’s proof in the continuous case, we believe 
that k(E) = (-Gia) in the gap (the - sign comes from the usual lack of sign 
in the finite difference operator). This would provide a new proof of the gap 
labeling theorem but we have not found a general proof of the fact. 

By a perturbation argument, we have proven that for a =p/q, q odd and 
IAl small, the gap where k(E) = l/q has 6 = a, where a is the solution of 
up = Z(mod q) with 1 a 1 minimal. Thus, for A small, we have succeeded in step 
(b). If we could show that for a =p/q no gap closes for any I, then we 
would by a continuity argument have a proof of the conjecture given at the 
beginning of this section. 
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