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ALMOST PERIODIC SCHRt3DINGER OPERATORS II.
THE INTEGRATED DENSITY OF STATES

JOSEPH AVRON aND BARRY SIMON

1. Introduction. In this paper, we will study Schr6dinger operators, -A + V,
on L2(R ) where V is an almost periodic function on R ". We will be especially
interested in the case t, where we will also consider the finite difference
analog on/2(Z)

(MU)n= u,,+, + u,,_ + V(n)u (1)

where V is an almost periodic function on Z (Jacobi matrix). Due to the recent
discoveries of several workers including G. Andr6, S. Aubry, M. Az’bel, J.
Bellissard, V. Chulaevsky, E. Dinaburg, A. Gordon, D. Hofstader, R. Johnson,
J. Moser, P. Sarnak, Ya. Sinai and D. Testard as well as the present authors (see
the review [20]), it has become increasingly clear that these operators have subtle
and fascinating spectral properties. In this paper, we study two technical objects
--the integrated density of states (ids), k(E), and the Lyaponov index, 3,(E), and
their relation. The most interesting consequence of these developments is found
in Section 7: Explicit, simple examples of Jacobi matrices, M, with purely
singular continuous spectral measures.

Let us now describe k in the Jacobi matrix case. Let t be the operator of
multiplication by the characteristic function of (n 1 < n < l ). Then, we define

k(E) lim (2/+ 1)-’Tr(f,P(_,E)(M)) (2)

where Pa(’) is the spectral projection for the operator on the interval f. We will
prove the existence of the limit (2) in Section 2 in two steps: First, define the
measure d/t by:

(2/+ 1)- 1Tr(5r,f(H))

for continuous functions, f. We will show that d/h has a weak limit, dk, as l--)

Secondly, we will show that dk has no pure point piece from which (2) follows
with

k(e) f dk
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by standard approximation arguments. We will show that both steps are true in
the one dimensional Schr6dinger case and the first step is true in higher
dimension (it is quite likely the second is true then too, but we do not have a
proof because we cannot bar infinite multiplicities of eigenvalues). One
important property of k that we will establish is that the spectrum of M is the set
of points of non-constancy of k, i.e.

spec(M) E k(E + ) k(E ) > 0 for all > O} (3)

(3) is especially interesting since, as we will explain, we believe it can happen that
dk is disjoint from the spectral measure class. This is known to occur in other
cases, e.g. for random potentials the ids is analytic while the spectrum is pure
point.

In Section 3, we study continuity properties of k. The most interesting is the
following: Let k(E,) be the ids for V(n)= cos(2rcn). Then for E fixed, k is
continuous at the irrational values of c and, in general, discontinuous at the
rational values! This phenomenon holds for general a.p. functions. As the almost
periods are varied, there are discontinuities at points where the dimension of the
hull drops; i.e. where rational dependences of the almost periods occur.
The Lyaponov index, 3,(E), is defined as follows. Let TI(E) be the 2 x 2

matrix defined by

where c u(l + 1), d u(l) and u is the solution of Mu Eu with u(1)= a,
u(0) b. Then

y(E)= lim Ill-’lnllTz(E)ll (4)

if the limit exists. In the context of random potentials, D. Thouless [23] found the
remarkable relation

,{(E) =flnl E- E’ldk(E’)

which we call the Thouless formula. Aubry-Andre [1], used the formula in the
context of almost periodic Jacobi matrices. Thouless’ proof of (5) is not rigorous.
Indeed, the construction of Jacobi matrices with purely singular spectrum will
rely on the fact that (5) may be false for E in certain small sets, indeed for
enough E to support a spectral measure! What we will show using Thouless’
argument and some functional analysis is that for almost all potentials Vw in the
hull of a fixed a.p. function, V, (5) holds for almost all E with respect to
Lebesgue measure. (5) is proven in Section 4. Its analog for the Schrbdinger case
appears in Section 5.

In Section 6, 7 we restrict ourselves to what we will call the almost Mathieu
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equation, viz. (1), with

V(n) Jk cos(2rrcn + 0 ) (6)

where ct, 0, are parameters. In Section 6, we establish a rigorous symmetry
found by Aubry [2], relating the operators for (, ct) and for (4/, a). In Section
7, we prove that when a is irrational and h > 2, then for a.e. 0, the operator has
no absolutely continuous spectrum. This is also where we prove that for suitable
a, the spectrum is singular continuous. Section 8 discusses the implications of
Section 7 for a class of Schr6dinger operators which Bellissard et al. [4] showed
were very close to the almost Mathieu equation.
We should say something about the connection of our work with that of

Johnson-Moser [10]. While the methods are very different, there is considerable
overlap with the results in Sections 2 and 5 and that part of Section 3 dealing
with a fixed frequency module. They discuss an object which they call the
rotation number (see also Moser [11 ]), which we shall see (in Section 2) is up to a
constant identical to k. At the time we began our work on the ids we knew that
they had proven that the rotation number existed but we didn’t realize the
equality of it and the ids. In any event, there is no doubt that their work on
existence predates ours by several months. However, on the basis of discussions
with Johnson, it is clear that the development of explicit properties was roughly
parallel in time. They do not establish the Thouless formula, but they do discuss
a closely related fact for E with Im E > 0.

In comparing our methods with those in [10], we note the advantage of our
method that at least for existence of k(E). We can treat dimensions other than
one dimension and moreover, we can treat the Jacobi matrix case. (It is possible
that one can extend the Johnson-Moser method to the Jacobi case but the
extension is not trivial). In favor of their rotation number approach, we mention
the beautiful homotopy argument that "quantizes" k(E) in gaps of the spectrum
which we quote in Section 2 and which is proven by Johnson-Moser [10].
While such opinions are admittedly subjective, we feel our approach to

existence of k is simpler than that in [10]. One reason is that by thinking of
rotation numbers, one cannot use the device of analyzing the weak limit dk first
and then prove continuity of the measure, dk.
We note that both we and [10] prove existence of k for a fixed a.p. potential,

V, and that this limit is the same for any other W in the hull of V. If one is
willing to settle for the slightly weaker result of existence and independence for
a.e. W in the hull (but perhaps not for the original, V), then the result is older
and follows from a suitable application of the Birkhoff ergodic theorem. From
the rotation number point of view, the result follows from arguments of
Schwartzmann [17] and in terms of ids it is a result of Benderskii-Pastur [6] if we
think of an a.p. function as an ergodic process. We also note that there is a third
approach to study the properties of k exploiting Von Neumann algebras. This
approach is due to Shubin [18] and has been exploited by Bellissard-Testard [5].
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We also note an interesting earlier paper of Scharf [16]. We prove here that k
exists by a simple argument once we know that the integral kernel e-tn(x, y) of
e -tn obeys: e-tn(x,x) is an a.p. function for > 0. Our arguments would work
just as well if one shows that (H- z)-(x,x) is a.p. when Imz > 0. This is
precisely what Scharf proves!
Throughout this paper we will use various standard properties of a.p. functions

without comment. A sketch of the theory appears in the appendix to [3]. We will
also use a few results from [3] about a.p. Jacobi matrices and a.p. Schr6dinger
operators. We do, however, want to note an alternative argument to the key fact
that an a.p. function has an average. This fact, which will be the main input into
the existence of k, is proven in [3] by exploiting the Birkhoff ergodic theorem and
uniform continuity of the shift of the hull. A more elementary proof notes that
for a finite linear combination of exponentials, the existence of (1/2T)fr r f(s)
ds is trivial, and any a.p. f is a uniform limit of such combinations.
Next, we note a theorem of Gordon [8] which we will need in Section 7. His

result is only given in the Schr6dinger case but it has proof that is valid also in
the Jacobi case. A description of his proof in English can be found in [20].

THEOREM 1.1J. Let V be a function on the integers for which there exist

functions V periodic ofperiod Tm --> oo so that

(i) sup lVm(n)l <
mn

(ii) sup Vm(n) V(n)[ < m- rm
-2Tm < n < 2Tm

Then an), solution of u(n + 1) + u(n 1) + V(n)u(n) Eu(n) obeys

li’ [u(n)2+ u(n 1)2]/[ u(1)2 + u(0)2] > 1/4

and, in particular, no solution is in l 2.

THEOREM 1.1S. Let V be a function on the real line for which there exist

functions V periodic ofperiod T,,---> so that

(i) sup lVm(X)l < oo
m,x

(ii) sup Vm(x) V(x)I < m- rm
2 Tr < x < 2 T,,,

Then any solution of -u" + Vu Eu obeys

[u,(x): + u(x) ]/[ u’(): + u():]
and, in addition, no solution is in L2.
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Finally, we note some terminology we will use for Diophantine properties of
numbers. By a Liouville number, we mean an irrational number c for which there
exist rational numbers Pk/qk with qk oO and

la- p/ql < k-q

An example is 2 -a" where an+= n2a" and a 1. The set of such a can be
seen to be dense and uncountable but also of zero Lebesgue measure. Given real
numbers (a,..., at) we say they have typical Diophantine properties, if there
are constant C,k, so that for any integers n,..., nt, not all zero, we have

ix n,ail > C(n21 +... + n)-k.
The typical n-tuples have a complement with measure zero. But they are

"non-generic" in the sense that they are of a second Baire category. The Liouville
numbers have measure zero but a complement which has second category.

It is a pleasure to thank R. Johnson and P. Sarnak for useful discussions and
to thank Yu. Gordon for telling us of his work.

2. The integrated density of states. As a preliminary to showing that the
integral kernel on diagonal, e-tn(x, x), is a.p. if V is a.p., we want to prove some
continuity of e-tn(x, y) in V. For this section, it would suffice to treat the case
where V,, VII --> 0 but for the next section, the following-stronger result is of
interest. For the Jacobi matrix case we let (Mou)(n) u(n + 1)+ u(n 1) and
in the Schr6dinger case H0 -A.

PV.OPOSlTION 2.1J. Let Vm be a sequence of functions on Z obeying (i)
supn,m[ Vm(n)[ < oo (ii) Vre(n) V(n) as m o for some function V. Let
M Mo + V; M Mo + Vm. For an operator A on 2, let A (i, j) (i, j Z) be
its matrix elements. Then

mlirnoo exp( tMm ) ](i, j) exp( tM ) ](i, j)

for each i, j.

Proof, By hypothesis, Mm-")M strongly
strongly, so the matrix elements converge. ["1

so exp(- tMm) -’-) exp(- tM)

The analog in the Schr6dinger case must be somewhat more subtle since even
the existence of a continuous integral kernel is not completely trivial. We exploit
Brownian motion results [19] but there is no question that other techniques could
be used just as well. While our proof exploits boundedness of V, with more work
one can handle suitable unbounded V (see [21]). We will require the fact that
there is for each > 0, a measure d/z0 x-.t on continuous functions, to, from [0, t]v,

to IW with to(0) x, to(t) y so that e-t(Ho+ V) has a continuous integral kernel
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for any bounded V with

(e -’(I+ v))(x, Y) fdlo;x,y;t expl fo’ V(o(s)) ds) (7)

See [19] for a proof.

PROPOSITION 2.1S. Let Vm(x), V(X) be measurable functions on FI" so that
(i) sup,,,xl Vm(X)I < m (ii) Vm(X) V(x) rn--> , for each x. Let H Ho + V,
H Ho + V Then for each fixed x, y:

exp(- tH )(x, y)-- exp(- tH )(x, y)

Proof. Follows from (7) and the dominated convergence theorem. [-]

In the above, we separated out the Jacobi and Schr6dinger cases because the
proofs were somewhat distinct. For the rest of this section and the next, the
theorems and proofs are virtually identical so we only given them in the
Schr6dinger case (we note the few results that are special to this case). We also
give the results only in 1-dimension, noting which results don’t extend to higher
dimension by saying "let , 1." We also note that while the Jacobi case was
only given in 1-dimension, there is no bar to handling the discrete case in higher
dimension to the same extent that the Schr6dinger case in higher dimension can
be handled.

THEOREM 2.2. Let V be an almost periodic function on R and let f be its hull.
Given w f, let Vw be the associated potential. Let H Ho + Vw. Then for an),
w f and > 0

lim (2/)-1Tr((_,,,)(x)e-tl4w) .w( t)

exists and is independent of w. Moreover, for any f in L2 with fll2 1, we have
that

.( t) fedw Tr(fe-mwf)
Proof. Fix > 0. Define

S(W,X) =(e-’llw)(x,x)

Thus, if w + x is defined by Vw+x(Y)= Vw(x + Y), we have that

g(w,x) g(w + x, o) (8)

If wnw in f, then Vw.(X)- Vw(x) uniformly in x, so by Prop. 2.1,
g(wn, 0) g(w, 0). It follows that for w fixed g(w,x) =-- h(x) is an almost periodic
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function with frequency module contained in the dual of . The existence of
the limit of

(2l)-ITr(exp(- tH )(_,,,)(x)) (2l)-if_-Ig(w,x)dx
is just the existence of the average of an a.p. function. Thus, w (t) exists, is
independent of w and

_(t) fdw g(w, O)

By the translation invariance of dw and (8)

_(t) (_dw g(w,x)

for any x, so

for any f L2 with Ilfll_ 1. This is precisely the final assertion of the Theorem.

Let Co be the continuous functions on R vanishing outside a compact set. A
simple approximation argument (see [15]) exploiting the Stone-Weierstrass
theorem, implies that

COROLLARY 2.3. Under the above hypotheses on V,

,e"w(F) lim (2/)-1Tr((_t,t)F(H ))

exists for an), F Co, is independent of w, and obeys

(i) w(F) > O if F > O

(ii) w(F) fdw Tr(fF(H )f)
(9)

for any f with [Ifllz 1.

Now, fix f with f(x) > 0 for all x and Ilfl12 1. Define d/-tw to be the measure

faa=- Tr(fPzx(Hw )f)

Let dk (=--density of states measure) be the Borel measure with /w(F)
f F(E)dk(E). Then

dk faw(d) (10)
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where (10) is short hand for

for F continuous (this is just (9)). We have

PROPOSITION 2.4. dl is a spectral measure for H in the sense that
Pa(Hw) 0 if and only if/zw(A) 0.

Proof. A direct consequence off > 0. [--]
THEOREM 2.5. spec(Hw) support(dk).

Remarks. 1. Recall [3] that spec(Hw) is w independent.
2. We are not claiming that dk is spectral measure for Hw. Indeed, this will

only be true if the measure class of d/.t is w independent and this will be false if
our belief is correct that H can have dense point spectrum in suitable regions of
energy. (For random potentials dense point spectrum is known to occur [7].)

Proof. If F is a continuous function supported away from spec(Hw), then
F(Hw) 0 for all w, so f F(E)dl 0 for all w and thus f F(E)dk is zero.
Conversely if F > 0 and F(E)> 0 for some E spec(Hw), then F(Hw)=/= O,
F(Hw) > 0 so since f > 0, f F(E)dl.tw(E) > 0 for all w. Thus f F(E)dk(E) > O.

If we now define k(E) =_ f(-o,e) dk, then Thm. 2.5 can be restated

COROLLARY 2.6. Spec(Hw) {El for all e > O, k(E + e) > k(E- e)} the
points of non-constancy of k.

Next we have an explicit formula for any possible discontinuity of k.

LEMMA 2.7. lims0[k(E0 + e)- k(Eo e)] fadw Tr(fP(eol (Hw)f) for an),

f > 0 with Ilfll2-- 1.

Proof. Pick a monotone decreasing sequence of continuous functions Fm(E)
with limm_,o Fm(E) 0 (resp 1) if E =/= E0 (resp E E0). Then

lim CFm(E)dklim k(Eo + e) k(E )] m--

and by the monotone convergence theorem

fdw  :r(ff (nw)f) fdw Tr(fP(e0i(Hw)f). [--]

All the results and proofs so far are valid for any dimensions. The following
proof is special to one dimension.

LEMMA 2.8. Let t, 1. Then the naar measure of {wlE0 is an eigenvalue of
Hw} is zero for each fixed Eo.
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Proof (Following Pastur [13]) By translation invariance of dw,

fdw Tr(’(,,,+ )P( Eo}(Hw )) a

independently of l. But tTr((z,t+)e(E}(Hw))=Tr(Pe}(Hw)). Since every-
thing is positive, we can interchange sum and integral to obtain

fdw Tr(e eo(Hw )) a oo

with the convention 0. oo 0. Since Tr(Pe0}(Hw)) < for all w, a must be zero.
Thus Tr(eleo}(Hw)) 0 for a.e.w. [--]

Remark. We believe this result is true in higher dimension. We regard it as
the analog of Thomas’ result [22] about absence of eigenvalues in the
multidimensional periodic case.
The last two lemmas immediately imply the first assertion in the following:

THEOREM 2.9. Let t, 1. Then k is a continuous function of E (called the ids).
Moreover, for any E and w:

k(E) lim (2l)-Tr(_,,,)e_o,e)(nw ))

lim (2/)-1Tr(gf_,,oP_oo,el(Hw))

Proof. As noted above, we must prove the final assertion. Let d/t be the
measure given by fF(E)dlt(E)= (2l)-lTr(’_t,t)F(Hw)). Then dk is the weak
limit of d/z. That

k(Eo) lim dl(E)
l-- oo ./( oo E

at points of continuity is a standard fact about weak limits. [-q

Remark. Since weak limits of continuous measures can have pure points, one
cannot obtain this result by only using 1(2l)-1Tr((_t,0PE}(H,))[

For the one dimensional Schr6dinger case, we link the ids to the rotation
number of [10, 11] in a series of remarks, special to the one dimensional continuous
case:

(1) Let Hw(0 denote the operator -d2/dx2+ Vw(x) on (-l,l) with the
boundary condition u(- l) u(l) O. Then, by a simple path integral argument,
for Ixl <

lie -tHw- e-m’](x,x)l < C(t)exp[-D(t)d#(x)]
with dz(x)= min(Ix- II, Ix + l[), so by mimicking the above

k(E) lim (21)-’Tr(P(_oo,)(H(O))
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since the rhs is the sum of the dimensions of eigenfunctions, the term "density of
states" is explained. We note that the analog holds easily for a wide class of other
boundary conditions; indeed in one dimension, any b.c. which lead to Hw(t
which are uniformly bounded below (for difference of resolvents as b.c. change
are at most rank 2).

(2) By standard o.d.e, techniques, if u is the solution of u" + Vwu Eu with
u(- l) 0, then

Tr(P(_ o,e(Hw(’)) number of zeros of u in (-l,l).

Then by Sturm comparison arguments, for any solution if -u" + Vwu Eu, we
have

ITr(P(_ ,e(Hw(’)) number of zeros of u in (-l,l)[ <

so that k(E) is the density of zeros of u.
(3) If one looks at p(x) u(x) + iu’(x), and exploits Rolle’s theorem, one sees

that the density of zeros is r-1 times the rate of the change of argument of qo, i.e.

k(E) 7/"-1 lim (2/)-’[argq(/)- argo(-/)]

This shows that k(E)= a(E)/r where c is the rotation number of Johnson-
Moser. [Actually, J-M use the limit of /-l[argq)(l)- q)(0)] but this is easy to
show, is equal to the limit of (2l)-l[argq(/)- argqo(-1)] by relating both to k.]

(4) Johnson-Moser use an elegant homotopy argument and this rotation
number picture to prove that if E spec(Hw), and if 2 is normalized by
requiring that Vw is a limit of combinations of e2rix , then

Bellissard-Testard [5] have an extension to the Jacobi matrix case by exploiting
Connes’ C*-algebraic K-theory.

3. Continuity of the integrated density of states. In this section, we will study
the dependence on V of the density of states k,(E) for -(d2/dx2) + V(x).
Rather than prove directly continuity of kv(E) in V for E fixed, we will
sometimes prove continuity of .W,(t) in V for fixed whence as in the last
section, continuity of k in V follows from the continuity in E. We first prove
continuity if V V in uniform norm. One could deduce this fairly easily from
consideration of .W since the integral kernel of e -tH" converges uniformly to that
of e -tH. Instead, we proceed as follows:

LEMMA 3.1. (a) If V < W, then kv(E) > kw(E).
(b) k,+a(E + a)= kv(E)
(c) kv(E) < kw(E + v- wIIoo)
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Proof. (a) Obviously Hvl) < H so that

and thus kv(E > kw(E).
(b) Follows from the obvious fact that

P(-,E+o)(H(I)o)v+ e(-,e>(nt>)
(c) w- v- WIl < v, so using (a) and (b)

kz(E ) < k_llv_wll(E)= kw(E + V- WII).

THEOREM 3.2. Let (Vn} and V be a.p. functions on (-o, o). Suppose that
v vii 0, Then for any E,

Proof. By Lemma 3.1(c) and symmetry:

kv(E V- VII) < kv (E) < kv(E / V- Vnll)

so that continuity of kv(E) in E implies the result. [--]

Remark. In the S case, one can read off the high energy behavior of kv(E
from Lemma 3.1(c) for it implies

kv=o(E- Vllo) < kv(E) < kv=o(E + Vll)

Since, in ,

we see that
k,_-o(e)

[k,(e)- =-’1 O(e -’/) (ll)

The other continuity result for k that we wish to examine concerns the
following. Fix u and let f be a fixed continuous function on the u-dimensional
torus T [q/Z, i.e. f is a continuous function on R with f(x + ni) f(xi) if
n l,..., n Z. (By combining our remarks below with the above consider-
ations we could varyf also as long as we required Iloo convergence on T). For
(ct a;Ol,...,) R2, let k(E; a,O) be the density of states, for

d2

dx2
+f(otix + 0 ) =-- H(oz, 19

Remark. Since k is constant over the hull of V if the ct are rationally
independent, then k(E; a, O) is independent of 0. We have the continuity results:
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THEOREM 3.3. Let/(E; a) flo ffl dOik(E; or, 0). Then k is a continuous

function of oz.

Proof. Define (t;a,O)=fe-tEdk(E), so that we need only prove
continuity of (t;a) fdOz-(t;a,O). But by Thm. 2.2".(t; a, 0 ) fdO Tr(<e- tH(ot,O))

where r is the characteristic function of (0, 1) and by Prop. 2.1, (and the
dominated convergence theorem in the S case), Tr( e -tn("’)) is continuous in
a for 0 fixed. Thus, employing the dominated convergence theorem again,
(t; a) is continuous in a. [--1

Remark. We emphasize that when one deals with the Jacobi case, the
condition in the next theorem that a,..., a be rationally independent is
replaced by "(1,a l,..., a) must be rationally independent." This is precisely
the condition needed for the orbit {(aln ann) In 0, +_ 1,... to be dense
in T.
THEOREM 3.4. Let a** be a vector in R of rationally independent frequencies.

Let OL(k) "--)OL(). Then for any o(k),o () k(E,a(k),Ok)-- k(E,a(),O()). (The
last is independent of 0 ()).

Proof. By returning to the proof of Prop. 2.1, we see that

Tr(’l e -tu’’) g(a, 0 )

is uniformly equicontinuous in (9 as we vary (. Now, by Thm. 2.2,

where 1-’k is the closure of (O (k) + R(x(k)) and dlk is the obvious invariant
measure. By the uniform equicontinuity, it suffices that dlzk((9)--)dl weakly and
this follows immediately from the rational independence of the a oo). [--q

When aj are not independent, it is evident that k(a, 0) will have a non-trivial O
dependence and thus since k(a, (9) is (9 independent when the aj are independent,
k(a, (9) can’t be continuous in a at points where the a are rationally dependent,
at least for most 0. Thus e.g. if , 2 and 0 (0, 0) is fixed, k(1,a) will typically
be a function which is continuous at irrational a and discontinuous at rational a.

As a detailed example of this phenomenon, let us consider the sequence of
periodic potentials, n 2, 4

V,(x) cosx + cos[ (I + n-

As n--) , obviously V converges pointwise to 2 cos(x). On the other hand,

Vn (x + n) cos x cos (1 + n ’)x
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goes pointwise to the potential zero. In a gap for 2cosx, k(E) is constant while
it is non-constant for l--0, so kn(E cannot converge to both limiting k(E)’s
and presumably it converges to neither. By analyzing the spectrum of H
--dE/dx2-1 Vn(x) further, one finds a rather subtle structure. First, we claim
that the individual gaps in o(Hn) must be small. For if n =-(d-/dx) +
Vn(x q- nr)== -(dE/dx2) 2sin(x/2n)sin[x(1 + 2n-l)], then by choosing u(x)

eikxfp(X/tl 1/2) with q C0, one sees that

Ilull C, n’/2 and II(q- k)ull2 < C(Ikl + 1)-n -’/

so (k2 Dn-’/=(lcl + 1), k- + Dn-’/=(Ikl- 1)) N o() =/= q. Thus if we look at
any interval [a,b] c (0, oo), no gap can be larger than O(n -/2) in size. On the
other hand, each band for H, contributes n- to the density of states so that as
n---) oo, the number of gaps in [a,b] must approach [n](koo(b)- k(a)), since
the argument above shows that k,(E) approaches the average over 0 of the k(E)
for cosx + cos(x + 0). Since these k’s are all non-decreasing and k(E) is strictly
increasing on (0, oo) for 0 rr, koo(b)- koo(a) > 0, i.e. we have many gaps, each
of them small. Indeed, our guess is that in a gap for some cos x + cos(x + 0), one
finds that for n large, H, will have n gaps of size O(n -l) and n bands, each
exponentially small.

There is one more continuity result on k that we will require in Section 6 (we
need it there in the Jacobi case; as usual, we state it in the Schr6dinger case).

THEOREM 3.5. Let a ) be a vector in R" of rationally independent frequencies.
Let tk -t be such that Vk(x)=f(ax) has a finite period L (which
automatically goes to o as k-->o). Let HP denote the Hamiltonian
--dE//dx2 q" Vk on [0,Lk] with periodic boundary conditions. Then

Remark. At least for the proof we give it is critical that L be periods, not just
any numbers going to infinity.

Proof. For a periodic potential, V, of period L, we can compare k(E) and
L-ITr(P_.,e)(He)))- fc(E)quite easily./jumps by L -l at the bottom of the
1st, 3rd,... bands and at the tops of the 2nd, 4th,... bands, k(E) increases in
the bands by L- in each band. Thus, for any E, Ik(E)- kT(E)l < L -l. Thus

[z- lTr(e(_oo,E)(n(kP))) k(E, ot(k))l < t-1

so that this theorem follows from Thm. 3.4. [--]

There is one final set of results about varying a that is of some interest.

THEOREM 3.6. If a) has rationally independent components and if a*o
then E, spec(H(a),O)))/f and only if there exist E, spec(H(ak), 0k)))
with Ek -’-) Eoo.
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Remark. The "only if" part is a general feature of strong resolvent
convergence. The "if" part is special. The compactness of the hull essentially
prevents eigenfunctions from "running away to c."

Proof. As remarked, we need only prove the "if" assertion. By a theorem of
Johnson [9], E spec(H(a(k), O(g))) implies that there exist bounded functions
u(x) and some other ff( in the hull of 0 (, so that

by rescaling Uk and translating x (and 0 (k)) we can suppose that IlUk] but
Uk(O >1/2. By a simple estimate of u’, we see that Uk(S) > 1/4 for Isl < 8 for some
small independent of k. By passing to a subsequence, we can be sure that
(k) (oo) for some g() and that Uk(X) u(x) pointwise (since the u’s are
uniformly equicontinuous). It follows that u is a distributional eigenfunction of
H(a),/)) and it is non-zero since uo(x)>1/4 on (-,). Thus Eoo

spec(H(a(oo), ((oo))) spec(H(a(oo), O(oo))). [--]

Remark. Actually, one can prove Johnson’s theorem by varying the above
proof. If E spec(H(a(),O())) and we pick a()--->a() with all a()

multiplies of a fixed L- so V(a()) is periodic, then by the "only if" part of the
assertion, we can find E spec(H(a(’),O())) with E-->E. In the periodic
case, one knows that there are bounded eigenfunctions, so we can find u with
H(a(),O())u Eu, and then argue as above to prove Johnson’s theorem
without the need to appeal to the Sacker-Sell theory as he does.

By looking at the proof, one sees that even if the a’s are not independent, one
can say something:

THEOREM 3.7. Let S(a)= ospec(H(a,O)) (which by a simple argument is

automatically closed). Then if t) -), we have that E S(t)) if and only
if there exists Ek S(t)) with Ek --)E.

COROLLARY 3.8. If S(ot) is defined as above, then ((E,t)IE S(a)) is a
closed set.

4. The Thouless formula---Jacobi case. Let Tt,w(E) be the transfer matrix
defined in Section for Mo + Vw.

Definition. We say that (w,E) has Lyaponov behavior if and only if
"/w(E) limlzl Ill-lnll Tz,w(E)ll exists. 7w(E) is called the Lyaponov index.
The following is a standard consequence of the subadditive ergodic theorem

(see 12]).

THEOREM 4.1. For each fixed E, 7w(E) exists for a.e. w and is independent of
w. (Call it y(E)).

Remark. In Section 7, we will see explicit examples where (w[either (w,E)
hasn’t Lyaponov behavior or w(E)v 7(E)}is non-empty.
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A direct argument shows that {(w,E)l(w,E has Lyaponov behavior} is
measurable, so by Fubini’s theorem"

COROLLARY 4.2. A.e. pair (w,E) has Lyaponov behavior.

Following Thouless, we proceed to try to compute 7. Notice that

Tt’w(E) ( E- 1Vw(l) -1)
and thus by a direct induction argument for > 2:

Pt,w(E)
T/,w(E)=

pt_,,w(E Q,-,,w(E))Qz-2,w(E)

where Pj,w and Qj, are monic polynomials of the degreej, i.e. Pj(E)= Ej + ....
Note Pz(E) 0 if and only if Hu Eu has a solution with u(0) 0, u(l + 1) 0
and Qz(E) 0 if and only if Hu Eu has a solution with u(1) 0, u(l + 2) 0.
Thus

e,(e) II (e-
j=l

where Ej(t) (resp .(0) are the eigenvalues of H with the b.c. u(0) u(l + 1) 0
(resp u(1)= u(l + 2)= 0). Letting

and similarly for k and letting

<Z)(E)- l-lnlez(E)l

t)(E) =/-’In] Q,(E)]

we see that

f nle- e’l ’) (12)

and similarly for "7. Since dk(0 --)dk weakly, if lnlE- E’[ were continuous, we
could freely interchange l o and the integral in (12) (which is what Thouless
does). In fact, as we shall see in Section 7, this interchange is not allowed for all
E in general. However,

LEMMA 4.3. Let q(E)= flnlE- E’ldk(E’). Then for each fixed w,
---) (E) in L2 (dE) and the convergence is uniform in w.
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Proof. Since k(l) k has compact support, we have that

,/(Z)(E)- ,2(E) f[E- E’]-’[(k(,) k)(E)]dE (13)

Now kz- k goes to zero pointwise, so in L2 by dominated convergence. (13) says
that (z) y is the Hilbert transform of k(z) k up to a factor of r. Thus, by the
L2 continuity of the Hilbert transform, yz y in L2. The uniformity in w follows
from the uniformity of the convergence of w to .
Now pick a subsequence, lk so that for all w:

II(/(E)- (z+,(E)lt2 2-, II(Z)(E)- (/+,(g)l 2-By the proof of the Reisz-Fisher theorem, off the measurable set of measure zero
of pairs (w,E) where either EklV(")(E) V("+’)(E)I2= m or Eklq(z’)(E)
(z’+’)(E)lZ , we have that 7(z’)(E) (E), (z)(E) (E) and so

IZ l- lnll K (E)II

But, by Cor. 4.2, off another set of measure zero, the limit exists without passing
to a subsequence. We conclude the following which is the major result of this
section:

Tno 4.4. There is a set of measure zero, Z, of pairs (w,E) so that for
(w, E) Z, we have that (w, E) has Lyaponov behavior with

Vw(e) flnle- e’l ak(e’)

Remarks. 1. Since k is only proven to be continuous, the integral in (14) is
only known to converge a.e. in E. But the assertion is only claimed a.e. in E.

2. Without any significant change, the proof here extends to the case of
general random Jacobi matrices with ergodic potentials.

5. The Thouless formula---Sehr/idinger ease. In the Schr6dinger case, we
define the transfer matrix Tx,w(E) as follows. Let u,v solve the equation
-g)" + (Vw- E) 0 with the b.c. u(0)= 0, u’(0)= 1; v(0)= 1, v’(0)= 0 and
let

rx,w(e)
v(x,E) u(x,E)
v

Ox

so Tx,w(E)(ab) Q) means that the solution with (0) a, tp’(0) b has (x) c,
q0’(x) d. As in the Jacobi case, we say that (w,E) has Lyaponov behavior if
Yw(E) limltl--,oo I/I-llnll TZ,w(E)II exists. Our goal here is to sketch the proof of
the following:
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THEOREM 5.1. Let ,()(E)= [max(0,- E)]/2 and ko(E ,n’-I[max(0,E)] /2.
For any a.p. function V on (- , ), we have that for a.e. E, limn_ fn_ lnE
E’ld(k- ko)(E’) exists and for a.e. pair (w,E), the pair has Lyaponov behavior
with / given by"

,(E)- v0(E) + y_ lnlE- E’ld(k- ko)(E’) (15)

Remarks. 1. Our proof works also in the random case. All that is needed is
the ergodicity and boundedness of Vw.

2. (15) really makes two assertions. First, that 3’ irk is the boundary value of
an analytic function in the upper half plane, and secondly enough about the
growth of the function at infinity to justify (15). The 3,0,k0 is a "subtraction"
procedure. Other subtraction procedures could be used. Johnson-Moser [10]
prove that - irk is the boundary value of an analytic function.
We prove Thm. 5.1 in 8 steps emphasizing that which differs from the Jacobi

case"

(1) Reduction to x integral. Rescale so that is rationally independent of the
frequency module and thus x o x + is ergodic on the hull. By noting that it is
easy to obtain uniform (in w) bounds on

sup
Ix-yl <

IITx,w(E)T,w(E)-’II

since V is bounded, we can reduce the Ixl o limit to the limit along integral
values of x.

(2) Analog of Thm. 4.1. Because of the ergodicity along integers, Thm. 4.1
extends

(3) Control of the R limit. We want to control the R oe using (11). Note
that for E < a < b

fablnlE E’ d(k ko)(E’) fab E’- k(E’) ko(E’)] dE’

+ b[ lnlE’ Eli k(E’) ko(E’)

so by (11), limb>a_,o fb lnlE E’ d(k ko) 0 so that the R-limit exists so long
as fe_l lnlE_ E’ld(k- ko) exists and this will be true for a.e. E by standard
Hilbert transforms. By exploiting the estimate ko(E g o) < k(E) < k(E /
vii oo) which led to (11), one also obtains the following that we will need below"

lim Ilk lnlE’-Eldk(E’)- lnlE’-Eldk(E’)lM---o (E’) < M 0(E’) < M

f_ lnlE’- E d(k ko)(E’)
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(4) Control of l-’lnuo(l,E ). Let Uo(X,E)= sin(xfr-)/V. We claim that for
a.e. E,

lim Ill-’lnluo(l,E)l=  o(E)

the limit being through the integers. For E < 0, this is easy. For E > 0, we note
that for a.e. E, we have that

for suitable c,m. Then uo(l(- > c’lll SO the limit in question is 0.
(5) Finite e.v. estimates. Let Ek(l be the e.v. of d2/dx2 + V(x) on [0,l] with

vanishing b.c. Let E)(l)=(rk/l)2 be the corresponding e.v. of V=0. By
general principles

(6) Product formula in finite volume. We claim that for I fixed

Uo(Z,e) e- (17)

(16) implies the absolute convergence of the product in (17) as well as that in
l’I=lE)(l)/EV)(l). Standard integral equation techniques show that for l

fixed, (a) lime__,_U/Uo= (b)luo(l,E)l Cexp(C2(l)]) for complex E.
Thus, by Hadamard product formulas:

u(l,E)-" c I’I (1- E-lE)
k=l

uo( ,e) 1-I
k=l

From this and (16) (to justify some interchanges of product), we obtain (17) up to
an overall constant

in front. Since U/Uo as E- o, we see that this constant must be 1.
(7) Uniform finite l bound on R o limit. We use (16) to note that

lim sup/-’ln >I-IMI[Ek--E/E#O)--E][]=OM---> oo l>1 k
(18)
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For

I-[ IEk E/E) El
k> MI

I-I
k> MI

+ o) Eo
-E

<exp( IEk)-El-’lE)--Ek,)
k> MI

<exp(llVII /-/(r2k)) (if M is large)
k> MI

(8) Completion of the proof. Given the last estimate in step (3) and (18) to
control the large E behavior, we can use the argument in Section 4 and (17) to
obtain that for a.e. E

lim IZl-’nlu(Z,E)/uo(Z,E)l= fnlE-- E’la(k- ko)(E’)

for a suitable subsequence lk. By using (4), we obtain control on the limit of
Ill-lnlu[ and by similar control of v,u/3x, 3v/3x of l-lnllTzll. By step (1)
control along a subsequence implies the required control for a.e. pair (w, E). [-]

6. Aubry duality. Thus far, all our results hold for general a.p. V’s. Here we
want to prove a very special fact of the almost Mathieu equation, i.e. the Jacobi
matrix with V given by (6). This result was discovered by Aubry [2] (see also
Aubry-Andre [1]), whose proof is not rigorous because no careful study of the
continuity properties of k in a was given. Since we have proven Thm. 3.5, we will
be able to directly follow the Aubry-Andre [1] argument in our rigorous proof.

THEOREM 6.1. Let k(a, E,X) be the integrated density of states for the Jacobi
matrix with V(u) k cos(2ran). Then for an), irrational a,

k(a,h,E) k(a,4/h, 2E/h) (19)

We begin with a lemma which "explains" why (19) holds.

LEMMA 6.2. Let a p/q with p relatively prime to q. Let Hq(a,h) be the
Hamiltonian on l(0, q- 1) given by

(Hq(a,h)u)(j) u(j- 1) + u(j + 1) + h cos(2raj)u(j)

where u (q) is interpreted as u(0) and u ( 1) as u (q 1). Then Hq a, 5,) is unitarily
equivalent to hHq(a,4/h)/2.
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Proof. Let W" 12(0, q 1) /2(0, q 1) by

q-I

Wu)(j) u(k)exp(2rianj)
n--0

Since W interchanges the finite difference and cosine terms we have

WHq(a,X)W-’ Hq(a,4/X) [’--]

Proof of Theorem 6.1. Given c irrational, pick p/qk- with p relatively
prime to q. Let kq((p/q),X, E) be q-1 times the trace of the spectral projection
for Hq(a, ) associated to (- oe, E). By Lemma 6.2

By Thm. 3.5, since a is irrational,

kq( P ,X,E )- k(t,t,E)q

Thus (19) holds. [-]

Remark. While Hq(a,X) and XHq(a,4/;k)/2 are unitarily equivalent, it is
presumably not true that for c irrational, H(a,X) and XH(a,4/2t)/2 are
equivalent. Indeed, if c has typical diophantine properties and X < 2, it is
believed H(c,X) has purely a.c. spectrum while H(c,4/X) has purely point
spectrum. [--]

COROLLARY 6.3. If is irrational, then

spec(H a, )) spec(H a, 4/ ))

Proof. Follows from Thm. 2.5 and Thm. 6.1. [-’]

COROLLARY 6.4. Fix h, and fix a irrational. Then for almost all E, O, 0’, both
M0 + 7 cos(2ran + O) E and M0 + 4-lcos(2ran + 0’) 2E/, have Lyaponov
behavior with indices related by

y(X,a,E) (4/?t,a, 2E/X) + ln()/2) (20)

Proof. Follows from Thms. 4.3 and 6.1. [-]

7. Absence of absolutely continuous spectrum. We are now prepared to prove
what are our most interesting results. We first combine Cor. 6.4 with an
argument of Pastur [13].
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THEOREM 7,1. Fix X > 2, a irrational. Then for almost all O, Mo +
h cos(2ran + 0)= M(O) has no absolutely continuous spectrum.

Proof. By the BGK eigenfunction expansion [21] for any 0 So =_ (E M(O)u
Eu has a polynomially bounded solution) supports the spectral measure class.

By (20), 7 > ln(X/2)> 0, so by Thm. 4.4 S0(1) (El M(O)- E either fails to
have Lyaponov behavior or has index 0) has measure zero for a.e. 0. If
M(O)- E has Lyaponov behavior, then, by a theorem of Osceledec [12] every
solution of M(O)u Eu grows or decays exponentially at both + oz and -oz.
Thus, if u is polynomially bounded, it decays exponentially and so is in 2.

Therefore

where S0(2) {El E is an eigenvalue of M(O)) is countable. Thus, for a.e. 0, So
has measure zero and therefore, the spectral measure has no a.e. piece. [--]
Combining this with Theorem 1.1J, we find:

COROLLARY 7.2. If a is a Liouville number and X > 2, then, for a.e. 0,
Mo + X cos(2ran + 0) has only singular continuous spectral measure.

Remarks. 1. Since the set of Liouville numbers is a dense G, the result of
Bellissard-Simon [24] applies and one also knows generically that spec(M(0)) is
a Cantor set. We believe it is probably a positive measure Cantor set. Recall that
the spectrum is closed so So may have positive Lebesgue measure even when So
has none.

2. On account of Gordon’s theorem, there are no generalized eigenfunctions
going to zero at infinity. This provides a counterexample to the folk wisdom that
a.c. spectrum corresponds to generalized eigenfunctions which do not go to zero
at infinity while s.c. to eigenfunctions going to zero but in a non-I2 sense.
Perhaps, its, is true that in this case the average of u goes to zero.

3. In particular, if a is a Liouville number, the set So(7) of Thm. 7.1, the set on
which the Thouless formula fails is non-empty, and we see that our care with sets
or measure zero was necessary. It is the suppression of such sets that was the
Aubry-Andre error. Also, by Johnson’s theorem, if S (1) ((E,O)[E S0(1)},
then (OI(E,O) S( is non-empty for any E spec(M(0)).

8. A Kroning penny model.
connection between solutions of

Bellissard et al. [4] have noted an intimate

and

d2
+ V(x)

([Mo + X cos(2ran + O) ]u)(n) Eu(n) (22)
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and

V(x) /cos(2ron + O)6(x- n) (23)

E k2; e 2 cos k; ) =/I sin k/k] (24)

Indeed [20], if solves (21), then u(n)=-/(n) solves (22) and q is in L2 if and
only if u is in 2, etc. By analyzing the equation (22) and using the fact that the
map (E,/)(,)t) is non-singular, one has:

THEOREM 8.1. Fix irrational. The operator (21) with V given by (23) has the
property that for a.e. /z and O, there is no a.c. spectrum in the region
(E--k2[ tsink/kl 2). If is a Liouville number, then in that region, an),
spectrum must be singular continuous.

Unfortunately, we do not know there is any spectrum in the region in question,
although we certainly believe that there is some spectrum there.

Added Note. After the typing of this article, we received a preprint of M.
Herman (Ecole Polytechnic Preprint), dated subsequent to the appearance of our
announcement (Bull. A.M.S. 6(1982), 81-86). Herman also discusses rotation
number and Lyaponov exponent and, in particular, proves the bound
,(E) > ln()t/2) of (20). His proof works for a more general class of a.p. V’s
(trigonometric polynomials).
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