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ABSTRACT 

Let d, [d,(r)] denote the codimension of the set of pairs of n X n Hermitian 
[really symmetric] matrices (A, B) for which det(X1 - A - rB) = p(X, x) is a reduc- 
ible polynomial. We prove that d,(r) G n - 1, d, G n - 1 (n odd), d, G n (n even). 
We conjecture that the equality holds in all three inequalities. We prove this 

conjecture for n = 2,3. 

1. INTRODUCTION 

The calculation of the codimension of various varieties of matrices has 
been a useful device in understanding various qualitative aspects of eigen- 
value perturbation theory. The most famous and the first of these results is the 
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theorem of Wigner and von Neumann [4] which states that the codimension 
of the variety of n X n Hermitian matrices with a degenerate eigenvalue in 
the space of all n X n Hermitian matrices is independent of n and is equal to 
three. This implies that “in general,” a one-parameter family of Hermitian 
matrices will not contain a matrix with a degenerate eigenvalue. This result is 
called in quantum physics “the no-crossing rule”. 

Consider a pair of complex square matrices (A, B). We identify this pair 
with the pencil A(r)= A + ,Z3, where x belongs to the complex field C. A 
pencil A + XB is called nondegenerate if the polynomial 

p(X,x)=det(AZ-A-&) 

is irreducible over C [A, x]. If A(x) is a nondegenerate pencil, all eigenvalues 

h,(r),..., X,(x) of A(x) can be obtained from a single eigenvalue [for 
example Xi(r)] by all possible analytic continuations in x. A(x) is a degenerate 
pencil if p(X, x) is a reducible polynomial. “In general” all the eigenvalues of 
a reducible pencil cannot be obtained from one eigenvalue. (More precisely, 
all the eigenvalues of a reducible pencil can be generated from a single 
eigenvalue if and only if p( X, x) = q( A, x)~, where 9(X, x) is irreducible and 
m 22. It can be shown that such pencils form a proper subvariety in 
reducible pencils. See for example [2].) 

Let M, [M,(r)] denote the set of pairs (A, B) of Hermitian [real symmet- 
ric] matrices, and let 0, [D,,(r)] be the set of pairs for which A + xB is a 

degenerate pencil. Since reducibility of p(h, x)=C~+~~~~~~A~X~, a,, = 1, is 
equivalent to a set of polynomial conditions on a,+ clearly 0, and D,,(r) are 
varieties in M, and M,(r). Here we view M, and M,(r) as real spaces of 
dimension 2n2 and n( n + 1) respectively. In [l] Avron and Simon gave an 
explicit example of a real symmetric nondegenerate pair (A, B). Thus 0, and 
D,,(r) are clearly proper subvarieties, so 

d,=codimD,=dimM,-dimD,>O, 

d,(r)=codimD,(r)>O. 

In order to understand some results in the analytic theory of bands in state 
quantum Hamiltonians, Avron and Simon asked for the exact values of d n. By 
identifying a component of 0, they proved d n ~2n -2 and conjectured 
equality, although they emphasized that the evidence for the equality sign 
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was weak. In this paper we wih prove that 

d,Gn-1 (n odd), (l.la) 

d,Gn (12 even), (l.lb) 

d,(r)<n-1 @In). (llc!) 

Thus, the Avron-Simon conjecture is false if n 23. We believe that the 
equality holds for (1.1) in part for reasons explained in [2]. In Section 2 we 
show 

d, =2, d&)=1, 

d, =2, d&)=2. 

In Section 3 we discuss (1.1) for odd n, and in Section 4 for even n. 
We should mention the relevance of (1.1) to the result of Avron and 

Simon we are trying to understand. They were interested in a theorem of 
Kohn [3], who considered a class of pencils A + xB, where A and B are 
specific differential operators, B is fixed, and A depends on a function V 
periodic on (- co, co) with period 1. For this particular class, Kohn showed 
that if V is not constant, then all eigenvalues of A(x) can be obtained from 
any fixed eigenvalue of A(x) by analytic continuation. In a natural n-point 
differenceequation approximation, A and B are n X n matrices and V is 
replaced by an n X n diagonal matrix. Thus, the intersection of this n- 
dimensional family with 0, is one-dimensional “when n = co,” as can be 
understood if d, 2 n - 1 (the constant function plays a special role in Kohn’s 
analysis, so even if d, were strictly larger than n - 1, the one dimensional 
intersection would not be disturbed). If our conjecture is true, one can 
understand Kohn’s result as a specific case of a generic phenomenon. 

2. THE CASES n = 2,3 

In the case that n = 2,3, p(X, x) = det(hZ - A - xB) is reducible if and 
only if p(h, x) is divisible by a linear factor X - a - xb. Let A = A - aZ, 
B=B-bZ.Thenp(A,x)isdivisiblebyX-a-xbifandonlyif 

det(A + xB)=O. (2.1) 
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LEMMA 2.1. The pair (A, B) belongs to D,, [D,(r)] ij’uand only if A and 
B commute. 

Proof. Assume first that A and B commute. Then there exists a unitary 
matrix U such that A,= W’AU and B, = U-‘BU are diagonal. So det(AZ - 
A--B)=det(XZ-A,-xB,)=(h-a,-xb,)(A-a,-xb,). Vice versa, 
suppose that det(AZ - A - xB) splits to a product of two linear factors. Let A 
and Z? be defined as above. It is enough to show that A and B commute. By 
changing basis we can suppose that 

since det d =O. Then (2.1) becomes bla =O, b,b, - /cl2 ~0. If (Y =O, then 
~=O,so[A,B]=AB-BA=Otrivi~y.Ifa#O,thenb,=Oandthesecond 
equality implies c =O. That is, Z? is diagonal and A and B commute. n 

THEOREM 2.2. Let D, [ Dz(r)] be pairs of degenerate 2 X2 Hermitian 
(real symmetric) matrices. Then 

dim D, =6, d,=B-6=2 
(2.2) 

dim D,(r)=5, d&)=6-5=1. 

Proof. According to Lemma 2.1, A, BE D, [or D,(r)] and if and only if 
[A, B] =O. Either A = al and B is arbitrary, leading to a component of 
dimension 5 [or 41, or A is arbitrary and B = b,Z + b, A, leading to a 
component of dimension 6 [or 51. n 

REMARKS. 

(1) The codimension-(2n -2) component found by Avron and Simon 
consists of pairs (A, B) with a common invariant subspace. For n =2 all 
degenerate pencils have a common invariant subspace, which explains why 
they got the correct answer in that case. 

(2) Let M,(c) denote the complex space of all (A, B) where A and B are 
n X n complex symmetric matrices. Denote by d,(c) the complex codi- 
mension of the degenerate pencils. Then 

d,(c)=l. 
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The extra condition on D, comes from the fact that the single condition 
] c ] ’ = 0 (which is replaced by c2 = 0 in the complex symmetric case) implies 
Re c =O and Im c =O. This example reveals the extra difficulty in computing 
dimensions of polynomial varieties in R” as opposed to C”. 

THEOREM 2.3. Let D3 [OS(r)] be pairs of degenerate 3 X3 Hermitian 
(real symmetric) matrices. Then 

dim D3 = 16, d,=18-16=2, 
(2.3) 

dim D,(r)=lO, d&)=12-10=2. 

Proof Let (A, Z?)E D3 [DJr)]. As in the case n =2, det(hZ - A - xB> 
has a linear factor, so (2.1) holds. After a change of basis, 

1 1 

0 0 0 Zk 612 6,s / 
A= 0 (Y1 0 , B = E;,, l& a, ) gi = Gii . 

0 0 (YCJ 
\ h1 h2 k3 

Let us assume the generic case, i.e., (pi # crs, (~i(~a #O. Then (2.1) becomes 

det(B)=O, (Yi(YsI;ii =o, 

(Yl(~11~~-~~13)2)+(Y2(&llE;22-~&12~2)=o. 

Since ala2 50, the equalities reduce to 

det B=O, G,, =o, Lu,~613]2+(Y2~G12]s=o* (2.4) 

The equations (2.4) give rise to two distinct components. For a[io2 >O the 
last equality in (2.4) implies &is = d,, =O. In that case (2.4) reduces to 
&ii = G12 = g,, =O. Taking into account that (us =O (A has zero eigenvalue), 
we see that we have lost 6 real parameters (in the real case we lost 4 real 
parameters). By letting A = A + al, B = l? + bZ we recover two real parame- 
ters. If we denote this component of D3 [ DJr)] by A, [As(r)], then we get 

codim A, =4, dimA,=18-4=14, 
(2.5) 

codim A, ~2, dimA,=12-2210. 
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However, if oL1oz (0, then the last equation in (2.4) eliminates only one 

real parameter. In that case the conditions (2.4) reduce 3 real parameters in 
B. If we denote the second component of 0s [ 0.J r )] by B3 [ B3( r )], then the 
above arguments show 

codim Bs =2, dimB,=18-2=16, 

(2.6) 
codim B,( r ) =2, dimB,(r)=12-2=10, 

It is left to consider the case where A has a multiple eigenvalue. Then by the 
Wigner-von Neumann theorem codimw,, ~3, and one can easily show that 

codim W,,( r ) = 2. Clearly 

codim( W, n 0,) >3, codim[ Ws( r) n I,] >2. (2.7) 

This establishes the equalities (2.3). 

REMAFX. The A, component is precisely the one found by Avron and 
Simon. It has codimension 4=2n - 2, as they computed. 

3. ODDn 

To get lower bounds on dim D,, we need only to find a component of D,, 
with the required dimension. While not every component of D,, will have a 
linear factor in p(A, x)=det(AZ - A - xZI) when n >4, according to [2] the 
component of D, with the highest dimension is the component for which 
p(X, x) has a linear factor. Motivated by (2.1) and the proof of Theorem 2.3, 
we try A with an index [n/2]. By considering the matrices QAQ”, QBQf, we 
may assume that 

A,=diag(O,l, -l,l, -l,..., 1, -l), (3.1), 

where n =2m +l. 

PROPOSITION 3.1. Let A = A, as in (3.1). Then the dimension of the set 
B of Hermitian matrices B with det(A, + xB)=O is of dimension n2 - n at 
least. 
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Accepting this result for the moment, let us prove 

THEOREM 3.2. Let D, be the set of n X n Hermitian degenerate pairs. 
Then 

dimD,,>2n2-(n-l), d,Gn-1 

if n is odd. 

Proof. Let A be a generic matrix with 2m + 1 distinct eigenvalues. Let 

A,(A)‘&(A)’ . . . ‘hrnt~ (A) be the eigenvalues of A. Then there exists 
a unitary matrix U(A) which can be chosen to depend smoothly on A in some 
neighborhood of a A,, with distinct eigenvalues, such that 

U(A)*AU(A)=d&(X,+,(A), h,(A), &,+l(A),...,X,(A), A,+,(A)). 

Define 

D(A)=diag(d,(A),...,d,,+,(A)), 

d,(A)=I, 

d,,+,(A)= [hm+l(A)- X2m-i+2(A)I"2y i =1,2 ,..., m. 

Let B be any matrix satisfying det(A, + xB)=O, where A,, is given by 
(3.1). Put 

C= U(A)D(A)BD(A)U(A)*+ cl. (3.2) 

Then 

det{A+xC-[h,,, (A)-cx]I}=det[U(A)D(A)(A,+rB)D(A)U*(A)] 

=o 

That is, det(XZ - A - xc) has a linear factor X-A,,+,(A)- cx. A direct 
count of the parameters shows that this component of degenerate pencils has 
atleastthedimension2n2-(n-l)=n’+n’--n+l. n 
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Let 

det(A,+xR)= i qi(B)x’. 
i=l 

(3.3) 

Thus, the condition det( A + xR) -0 is equivalent to rr polynomial equations 

9JW=O, j=l,...,n. (3.4) 

Therefore over the complex numbers this algebraic variety has codimension n 
at most. However, since B is taken to be Hermitian, we have to show 
explicitly that the codimension of (3.4) is at most n. It is easy to see that 

91(R) = b,,. So (3.4) yields that b,, = 0. The matrix B is parametrized by 
n2 - 1 real numbers Eij = Re b,,, vii = Im bii for i <i and tii = b,, for 1~ i. 
For simplicity of notation we denote these parameters by y,, . . . , y,z_ 1, and 
we view the numbers 9a(B), 9,(B) as the elements of R”-‘. Thus the equality 
(3.3)(b,,=O)definesapolynomialmapF:R”2~’~Rn~1,F=(F~,...,F,~1). 
If we can find y(O) with F(y(‘)) = 0 such that 

rankz(y’)=n--I, 
P 

then by the implicit-function theorem { y 1 F( y ) = 0) n (a neighborhood yo) is a 
smooth manifold of dimension n2 - n. Obviously, it suffices to find 12 - 1 

independent parameters zi, . . . , .z,_ 1 such that the square matrix $( y ‘) is 
P 

nonsingular, i.e., the kernel of this matrix is trivial. 
Now let P,(X) be the polynomial Pi(x)=(a/azi)[det(Ao + xB)]. Then the 

corresponding kernel is trivial if and only if Pi(x), . . . ,Pn_l(x) are linearly 
independent. Thus we seek n Hermitian matrices $, B,, . . . , B,_ 1 (the last 
n - 1 matrices linearly independent) such that det( A, + xR,) E 0, and 

Pi(x, z) = $det(A,, + So + rzz,Bi), i=l ,.*.,n-1, (3.5) 
I 

are linearly independent for x =O. To this end we need the following 
observation. 
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LEMMA 3.3. Let C=(cii) be an n X n matrix with cii =O if i 32, ia2, 

and i # i. Suppose that cii # 0 for i >2. Then 

(3.6) 

Proof. Fori=2,..., n, from the first row, subtract the jth row multiplied 

by clicj~‘. The result is a lower triangular matrix with diagonal elements 

Cl1 -~~&rcrjcil, $2,. . . ,c,,. n 

Proof of Proposition 3.1. We will let B,, be the Hermitian matrix of 
the form given by Lemma 3.3 having the diagonal elements 

1 , . . . , 1. By the above lemma O,l, -1,2, -2 ,..., m, - m and the first row 0, 

det(A,+xB,)= -x2 i (l+jx)(-l-jx) 
i=l i;l&+- [ -l-ix 

-0. 

Let B$riziBi be a real symmetric matrix satisfying the conditions of Lemma 
3.3 with the diagonal elements 0, z,,O, .~a,. . .,.z,,,,O and the first row 

det 

where 

: A + xB, + x xziBi 
I i=l 1 

In z( l+%l+Jz 1 -- 
i=l l+x(i+zj) 

I 
lfxi ’ 

so 

pi+.o)= - Q(x>ob 
(l- xi)2 ’ 

pi+, = 
2QW’) 

lfri ’ 
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implies 

5 -*ix(l+~j)-2+2ai+~~(l+xi)-1~0. 
i=l 

Multiplying this identity by (1+ xi)2 and letting x = -l/j, we deduce 
that ai= for j-l,... ,m. A similar argument implies that o++* =O, j = 
1 , . . . , m. This establishes the linear independence of Pi( X, 0), . . . , P2,( X, 0) and 
completes the proof of the theorem. n 

Notice that in the above proof all the matrices involved were real 
symmetric. That is, the set of all real symmetric matrices B satisfying 
det(A, -i- &)=O is at most of codimension n. Then for any generic real 
symmetric matrix A we construct the matrix C given (3.2) where U(A) is a 
real orthogonal matrix. As before, we conclude that the codimension of all 
pencils A + XC such that det(AI - A - XC) has a linear factor has at most 
codimension n - 1. 

THEOREM 3.4. LA D,,(r) be the set of n X n real symmetric degenerate 
pairs. Then d,(r)< n - 1, dim D,(r)> n2 + 1 if n is odd. 

4. EVEN n 

The results of Section 2 show that for an even n there is a distinction 
between the codimension of real symmetric and Hermitian degenerate pencils. 
A technical reason for that is that if a singular Hermitian matrix A has the 
equal number of positive and negative eigenvalues, then A has at least a 
double zero eigenvalue. According to Wigner and von Neumann, the codi- 
mension of all such Hermitian matrices is 4. However if we consider all real 
symmetric matrices with a double zero eigenvalue, the codimension of this set 
is 3. 

In order to prove the inequalities (l.lb) and (1.1~) for an even n we must 
give the correct analog to the key result of Section 3-Proposition 3.1. The 
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explanation we gave above suggests the “right” form of A, for n =2m f2: 

A,=diag(O,O,l,-1,1,-l,..., 1,-l). (4.1) 

PROPOSITION 4.1. Let A, be as defined above. Then the dimension of the 

set B [B(r)] of Hermitian [real symmetric] matrices satisfying det( A, + xB) 
-0 is of codimension n - 1 at most. 

Proof. Consider the equality (3.3). Clearly 

%@)=o~ 92(~)=(-l)m(bIlb22-Ib1212). (4.2) 

Thus if we restrict ourselves to all B =( b,,) such that 

(4.3) 

then 

det(A,+xB)= $ qi(B)x’. 
j=a 

(4.41 

Choose B, to be a Hermitian matrix satisfying the assumptions of Lemma 
3.3, with the diagonal elements bc:,‘, b&T, 1, - 1,. . . ,m, - m and the first row 
bi:‘, b$ 1 1 , . . . , 1. Here we assume that b\y)b&i) = 1 bi?j I 2 > 0. 

Again using Lemma 3.3, we easily deduce det( A, + &a) = 0. 
Now let 8y!J’rziBi be a real symmetric matrix satisfying the conditions of 

Lemma 3.3 with the diagonal elements O,O, z,,O, x2,. . . ,z,,,O and the first 
row O,O, z nl + i, . . . , zam, 0. The calculations carried out in the previous section 
show that the polynomials Pi( x, 0), . . . , P2,,,( X, 0) are linearly independent. 
That is, the set of all Hermitian matrices B = (bLi) satisfying bij = b,‘:) for 
1~ i, j < 2 and the equality det(A, + xB) G 0 is of codimension 4+2m at 
most. However, since we allowed to choose bjy’, 1 G i, j G 2, free within the 
restriction (4.3), the codimension of B is at most 2m + 1. In the real 
symmetric case we choose b’:,’ to be real, and we deduce as before that :he 
codimension of B( r ) is at most n - 1. n 
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THEOREM 4.2. Let D, [D,,(r)] be the set of n X n Hermitian [real 
symmetric] degenerate pairs. Then 

d< .--n, dim D, >2n2 - n, 

dn(r) <n-l, dimD,,(r)an2+1 

if n is even. 

Proof. Let A be a Hermitian matrix with a double middle eigenvalue 

h,(A)> . . . >A,(A)>a=h ,+,(A)= A,+z(A)> . . . >X2,+2(A) 

(4.5) 

The Wigner-von Neumann result implies that the codimension of such 
sets of matrices is 3. Let 

U(A)*AU(A)=diag(a,a, A,(A), &,+,(A),...,&,(A), X,+,(A)), 

D(A)=diag(d,(A),...,&,+s(A)), 

d,(A)=d,(A)=l, 

d,,+,(A)= [a - ~2m+~-~(~)1"2~ i=l,...,m, 

Let B be any matrix satisfying det(A, + xB)-O. Define C by (3.3). As in the 
proof of Theorem 3.2, det(AZ - A - XC) has a linear factor. So the codimen- 
sionof allpairs(A,C)isat most3+(n-l)-l=n+l. Finallyweconsider 
all pencils of the form (A + aC, C), where (Y is a real parameter and (A, C) is 
the pencil described above. Clearly (A + aC, C) is also a degenerate pencil. It 
is left to show that the set of all degenerate pencils of the form (A + (YC, C) is 
not contained in the original set (A, C). To this end it is enough to show that 
A + LYC has n distinct eigenvalues for some A and a. By the definition of C, 
A + aC -(a + c)Z is equivalent to the matrix A, + aB, where det(A, + aZ3) 
= 0. Choose B = Z3, as in the proof of Proposition 4.1. 

Since b\ybg = ) big 1’ >O for a small 1y #O, A, + aB will have only one 
eigenvalue which is equal to zero. Therefore A + (YC has pairwise distinct 
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eigenvalues. Thus the algebraic set of all degenerate pairs of the form 
(A + cuC, C) has at least one codimension less than the set (A, C). That is, the 
codimension of (A + aC, C) is at most n. In the real case the codimension of 
all real symmetric degenerate pairs of the form (A + arc, C) is n - 1, since the 
codimension of all real symmetric matrices with a multiple eigenvalue is 2. 

The proof of the theorem is completed. n 
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