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We deal primarily with spectral analysis of an abstract self-adjoint operator. H, 
on a Hilbert space, X”. We propose a further refinement of the absolutely 
continuous subspace, ;F”a,, into the transient absolutely continuous subspace, &‘a,. 
which is the closure of those cp with (cp, e -j/Ho) = O(t-“) for all N and the recurrent 
absolutely continuous subspace, 2& = ‘qc nX&. We discuss general features of 
this breakup. In a subsequent paper, we construct analytic almost periodic 
functions, V, on (--03, 03) so that H = -d*/dx* + V(x) on L2(-co, co) has only 
recurrent absolutely continuous spectrum in the sense that qa, =.;Y. 

1. INTRODUCTION 

One of the basic questions in analyzing a self-adjoint operator, H, on a 
Hilbert space, 3, is the decomposition of Z obtained by studying the 
spectral measures for H. In addition to the obvious abstract mathematical 
interest, it is important in the long time behavior of e-lte(p and represents a 
first step in classification of this behavior. 

The standard wisdom (see, e.g., 1251) is that one should decompose the 
spectrum into three pieces, uPP (p ure point), crac (absolutely continuous) and 
crsC (singular continuous) corresponding to the decomposition of an abstract 
measure Q into a pure point piece dppp = C, a,,&. - x,), an absolutely 
continuous piece, dp,, = G(x) dx and a singular continuous piece, dpsc, i.e.. a 
measure with p,,({x}) = 0 for all x and so that there is a set A with 
pu,,(R\P) = 0 and so that (A / = 0 (1 . / = Lebesgue measure of .). 

When H is a Schrodinger operator, the standard wisdom goes a step 
further: it puts these into two baskets, which, for want of better terms. we 
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call “ordinary” and “extraordinary.” (We must note some dissatisfaction 
with these terms, having rejected “expected” vs “unexpected” because once 
understood, the unexpected becomes expected and having rejected “normal” 
vs “pathological” because we feel the pejorative is unearned. Our 
unhappiness with the present terms comes from the fact that they are nearly 
synonymous with “common” and “uncommon” and we feel that extraor- 
dinary spectra will become more and more commonly encountered than one 
might have thought!) In the standard wisdom, pure point and absolutely 
continuous spectra are “ordinary” and singular continuous is “extraor- 
dinary” and is not expected for “reasonable” differential operators. 

The standard view has been partly challenged by recent studies. First 
Pearson [ 19, 201 has constructed examples of C” functions V on (-co, co) 
with all derivatives going to zero at infinity so that -d2/dx2 + V has only 
singular continuous spectrum! Secondly, Goldshtein et al. [lo], verifying 
physical insight going back to Anderson [ 11, have proven that for a large 
class of “random” V bounded continuous functions on (-co, co), 
-d2/dx2 + V has only point spectrum dense in a semi-infinite interval (see 
also [ 171 for simple looking explicit operators with this property). The latter 
class of examples shows that in many ways one should refine point spectrum 
into two types distinguishing between “dense point spectrum” and “ordinary 
point spectrum.” In Section 5, we present a first attempt at such a refinement 
which we dub “thin” and “thick” point spectrum. The latter is in the extraor- 
dinary basket, the former in the ordinary basket. This yields a balance of two 
kinds of spectra in each basket. 

Our main purpose in this paper is to propose a refinement of absolutely 
continuous spectrum into two pieces: “transient” and “recurrent.” The 
absolutely continuous spectrum that one is used to is “transient” and we 
place it in the ordinary basket but “recurrent” spectrum is extraordinary. 
Thus in the end, we have two kinds of ordinary spectrum (transient 
absolutely continuous and thin point) and three kinds of extraordinary 
spectrum (singular continuous, recurrent absolutely continuous and thick 
point). 

Let us describe our motivations for refining absolutely continuous spectra. 
The first comes from considering a class of Cantor-like measures described 
in some detail in Appendix 1. Consider a set obtained from [0, 1 ] by 
removing middle pieces which are not thirds, i.e., first remove the set 
centered about { with size I/ni, then the sets centered about the middle of 
each of the two remaining intervals of size l/n2 times the size of these 
intervals, and at the kth step remove the middle l/n,th of the 2k intervals 
remaining. Define a Cantor function C(x) by setting it to be 4 on the first 
interval removed, a and i on the next pieces removed, etc., and extending by 
continuity. The associated Cantor measure dp on [O, 1] is defined by C(X) = 
ls dp(y). dp is singular with respect to Lebesgue measure if and only if 
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otherwise it is absolutely continuous and indeed has the form I.4 ) ’ g?,(x) d.Y 
for Xi the characteristic function of the associated Cantor set. Our point is 
that in many ways these absolutely continuous Cantor measures are closer to 
singular continuous measures than to ordinary absolutely continuous 
measures. This becomes clearer if one considers the long times behavior of 
the Fourier transforms 

F(t) = (‘eiX’ dp(rr) 

which we compute in Appendix 1 in the case where all ni are odd integers. 
Of course, for the absolutely continuous case, F(t) --) 0 as I + co. But aIs0 
F(f) --f 0 so long as 

nj-+ a3 as j- 03. (1.7 I 

Obviously ( 1.2) can hold even when (1.1) holds. Moreover, all F(t) have 
anomalous bumps at the points 

27cn, ... nA. 

where F is much larger than at most point “nearby” and for all choices of 77. 

“1: IF(t)/ dt = CL). 

One can determine whether ,D is absolutely continuous by looking at F, since 

(1.1) holds if and only if LX l,F(t)l’ dt = CO, 
-0 

but it seems to us that the L* norm of F (while “physically natural”) is not a 
particularly critical object for long time behavior and that the measures with 
nj = j and nj = j(ln j)’ are close relatives even though they are on separate 
sides of the singular continuous/absolutely continuous barrier. 

When we pass to operators one cannot merely look at individual spectral 
measures. For example, if H is multiplication by x on L’(-co, a~), and 
Q(X) = X,4(~), where A is one of these Cantor sets constructed with 
C nj- ’ < co, then (q~, e -ifH~) will be misbehaved. The point though is that w 
can be well approximated by vectors vn with (q,,, ePftHq,) in Schwarz space 
as a function of t. With this in mind, we define r to be a transient vector if 
(q, eirHq) = 0(t-“) for all N and set <$a, to be the closure of the transient 
vectors. While the transient vectors are not a subspace, we will prove that 
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the closure Z&, is a subspace. GV&, is the set of recurrent vectors and 
ea, = Zfaf n Xac is the recurrent absolutely continuous space. 

Our second (and actually initial) motivation comes from consideration of 
Schrodinger operators with almost periodic potentials. Consider, for a 
moment, H = -d*/dx* + V with V a bounded continuous function but not one 
going to a constant at infinity. Classically, if the energy is less than - 
lw+, V(x), then the particle will not leave a bounded set and if it is strictly 
bigger than sup V(x), it will make it to infinity approaching infinity at a 
linear rate (not that t--lx(t) approaches a limit but at <x(t) < bt for a, b of 
the same sign at t large). Quantum mechanically, though, this is not true. 
Not only is tunnelling through barriers possible but more importantly even a 
very energetic particle which classically sails above the low energy bumps 
has the possibility of being reflected from each and every bump and therefore 
the transport to infinity is more complicated. Indeed, barring miracles, we 
expect the spectrum in such examples to be some isolated eigenvalues of 
finite multiplicity and mainly some kind of extraordinary spectra! This 
intuition is borne out by the studies of random ] lo] and sparse [ 191 
potentials. 

Of course, there is a case where a miracle does take place and transport to 
infinity is normal: If V is periodic, there is nice absolutely continuous 
spectrum and nice transport (see Section 4). One can understand why this 
takes place; the coherences in phase that the particle needs to build up to get 
through the first few bumps are exactly those needed to get through the later 
bumps. For almost periodic potentials one does not expect this. (There are 
some very special almost periodic potentials constructed by Dubrovin et al. 
[ 71, whose spectrum has only finitely many gaps where the transport should 
be normal but these are clearly highly non-generic). A particle in an almost 
periodic potential will think for a while that it is in a periodic potential. It 
will sail through a large number of bumps but eventually the bumps will slip 
out of sync with the coherences and the particle will be reflected back. If the 
particle attempts to build coherences on a larger scale to get through even 
more bumps, eventually since the potential is not periodic, reflection takes 
place. Thus we have a notion of continual return to the origin albeit with 
possible dispersion (i.e., spreading of the wave packet) and longer and longer 
runs. This picture is so like the one in Pearson’s example (where it is not 
sufficiently emphasized that even though the spectrum is singular continuous, 
one expects (9, eifHp) -+ 0 due to dispersion of the wave packet during the 
long intervals between bumps), that we initially thought singular continuous 
spectrum was most likely. We had to reconcile this picture with results of 
Dinaburg and Sinai (61 (see also Riissman [24]) that for a larger class of 
quasiperiodic potentials, one has some absolutely continuous spectrum. 
Recurrent absolutely continuous spectrum is our synthesis of the thesis of 
anomalous transport and the antithesis of the results of [6, 241. 
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In a subsequent paper 121, we will construct some almost periodic 
potentials on (-co, co), so that -d*/dx’ + V(X) has only recurrent absolutely 
continuous spectrum. It should be mentioned that independently and earlier 
than we, Moser ] 181 studied the same class we do in [2]; while he does not 
prove absolute continuity, his results imply there is no transient absolutely 
continuous space for his examples. 

We close this introduction with a sketch of the remaining contents. As one 
would expect, since transience vs recurrence is a unitary invariant, it must be 
possible to describe these spaces in terms of the spectral measure classes. ‘To 
do this we need some preliminaries on set theory which we put in Section 2. 
The central section of the paper is Section 3. In Section 4 we discuss the 
connection with “transport” in the theory of Schrddinger operator and in 
Section 5 we describe our partition of point spectrum into thick and thin. In 
Appendix 1. we discuss Cantor measures and in Appendix 2 construct some 
illustrative sets. In Appendix 3, we discuss the construction of singular 
measures by Pearson [ 19 ] in its relation to a theorem of Kakutani ( 141. We 
emphasize that. while we have not found discussions of the material in 
Section 2, Appendix 1 and Appendix 2 in the literature. the material ix 
“classical” in spirit: we include it for the reader’s convenience. 

2. SOME ESSENTIAL TOPOLOGY 

We hasten to begin by noting that “essential” in this section’s title is 
intended in the technical sense of “almost everywhere” rather than in the 
colloquial sense of “critical.” 

A measure class is an equivalence class of Bore1 measures on (-co. co) 
under the relation of mutually absolutely continuous. An absolutely 
continuous measure class is a class consisting of measures absolutely 
continuous with respect to dx. An euent is an equivalence class, [A ], of Bore1 
subsets of (-co, 03) under the relation A -B if and only if ]A A B/ = 0. 
where A is symmetric difference and 1 . ) is Lebesgue measure. By the support 
of an absolutely continuous measure, dp, we mean the event, [A 1, determined 
by writing d,u =f(-u) dx and letting 

We have: 
A={xIf(x)>OL (2.1) 

LEMMA 2.1. Support sets up a one-to-one correspondence between events 
and absolutely continuous measure classes. 

Proof. dp =S(x) dx is mutually absolutely continuous with respect to 
B (x) dx if A is given by (2.1). gA dx is equivalent to X8 dx if and only if 
JAABJ=O. a 
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Remark. Every event [A J has a distinguished element B defined to be 

B={x~h~(2~)-‘((x-f,x+f)nA\=l). 

That B E [A] follows from the theory of differentiation of integrals; see 1331. 
B is called the set of points of density of [A 1. It will play a minimal role in 
what follows. 

Given an event [A 1, we say that x is an essential interior point of [A ] if 
and only if there is a I > 0 with 1(x - t, x + t) nA ( = 2t. The essential 
interior of [A] is the set (we emphasize that it is not merely an event) of 
essential interior points of A. x is called an essential limit point of (A] if and 
only if for any t > 0, 1(x - t, x + t) f7 A / > 0 and the set of essential limit 
points is called the essential closure. 

PROPOSITION 2.2. Essential interiors are open sets, essential closures are 
closed sets, and the complement of the essential interior of [A] is the essential 
closure of \R\p 1. 

Proof. The last assertion is just chasing negatives. The first assertion 
implies the second. To prove the first note that if 1(x - t, x + t) n A ( = 2t and 
if/y-x(=E<t,then((y-s,y+s)nA/=2sifs=t-6. I 

Remark. Obviously any essential interior point is a point of density. But, 
in general, the converse is false and the event determined by the essential 
interior can be much smaller than [A]. Indeed, the positive measure Cantor 
sets of Appendix 1 are sets with empty essential interior and in Appendix 2, 
we construct an event A whose essential interior is empty but whose essential 
closure is (-co, co). 

If [A] is an event and if B is its essential interior, we define the event 
[A\B] to be the essential frontier of [A]. The decomposition of [A] = 
[B] U [C] with [B] and (C] disjoint (i.e., (B n C( = 0) into the essential 
interior and essential frontier will be essentially the decomposition X& into 
&NO&,,. 

We will need one last result of this genre: 

PROPOSITION 2.3. Let f be in L’(R) and let the event 
PI = {~lf(~)fO1 b e a subevent of some event [A]. Suppose f has a 
continuous represetative. Then [E] is a subevent of (the event determined by) 
the essential interior of [A]. 

Proof. If f is continuous, [E] contains an open representative E E [E]. 
Since E c A, E is in the essential interior of A. 1 
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3. BASIC DEFINITIONS AND PROPERTIES 

DEFINITION. Let H be a self-adjoint operator on a separable Hilbert 
space, 1. o E ,P is called a transient vector for H, if and only if, for all 
N> 0. 

lim /t l”(o, e -it”o) = 0. 
ItI’m 

(3.11 

The transient subspace, qac, is the closure of the set of transient vectors 
(which we will eventually prove is a subspace). 

PROPOSITION 3.1. Let dp, be the spectral measure.for q. i.e.. 

(_ f(x) &q,(-~) = (97, .f(Wv). (3.2) 

If v, is a transient vector, then Q,(x) = G(x) dx with G E C” and. in 
particular, 

Conversely if dp,(x) = G(x) dx and G E CF (note compact support). the?1 (;7 
is a transient vector. 

Proof: Let 

F(t) = (q, epirnq7) 

so that 

F(t) = 1. e-ir.r dp,(x) 

and thus pum is up to a factor of (27r)“’ the Fourier transform of F. Equation 
(3.1) and the trivial IF(t)1 < l]pJI * imply that (1 + 1 ti)“% E L’ for all N so 
that dp,(x) = G(x) dx for G E C”. Conversely, if G E C$, its Fourier 
transform obeys ) t lNF(t) -+ 0 for all N. a 

EXAMPLE 3.2. Let H = multiplication by x on L’(O, 1). Let h E Ci’($, f) 
with h(4) f 0. Let .A“ be the characteristic function of 10, $1. Let cp, = h, 
oz = e”h. Then 

dp,, = dp,, = I h I2 dx 
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and ]h(‘E Cr, so q9i, q072 are transient vectors. Let rp = q, + oz so 

dp, = ]h]‘[2 + 2 cos(X)] dx; 

since (h I*[ 2 + 2 cos X] is discontinuous a, is not a transient vector, so the 
transient vectors are not a subspace. 

The next example, while simple, is so basic, we will call it a proposition. 

PROPOSITION 3.3. Let Q c (--co, co) be open and let H be multiplication 
by x on SF = L’(Q). Then X = S& ; i.e., every vector is a limit of transient 
vectors. 

ProoJ As above any cp E C?(Q) is a transient vector. But C?(Q) is 
dense in L*(Q). m 

Given an operator H on a separable space and a trace class oberator B 
which is strictly positive (i.e., (rp, Bq) > 0 if v, # 0), we can define a measure 
pB by 

p’(d) = Tr(BE,) 

with E, the spectral projections for H. While #’ is dependent on B, its 
measure class is not and we call it the H-spectral measure class (it is the 
union of the spectral multiplicity measure classes defined in the multiplicity 
theory; see [25]). Every measure class has an absolutely continuous piece 
and so there is an event, the H-event determined by the H-spectral measure 
class. It is in fact the event [A ] determined by A being a “minimal” event 
with 

4Eac = 4, (3.4) 

when E,, is the projection onto Zac, the absolutely continuous space for H. 
The following identifies &8c and e,,, defined by 

DEFINITION. The recurrent space is the orthogonal complement of &,,. 
ec n &“:,, = Z&, , the recurrent absolutely continuous space. 

THEOREM 3.4. Let H be a self-adjoint Spector on 2, a separable Hilbert 
space. Let [A] be the H-event and let [B], [C] be its essential interior and 
essential frontier. Then 

In particular, &,, is a subspace. 

Remark. We do not see any easy way of deducing that q,, is a 
subspace without explicitly computing it! 
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ProoJ Let 9 be a transient vector so that q E F& and its spectral 
measure is f(~)dx with fE C”‘. Clearly, the event determined by 
{x / .f(x) # O} is a subevent to A. Thus by Proposition 2.3, f vanishes on C. 
i.e., cp E E, 5, so &,, c E, e,. Because B is open and B is a subset of the 
A-event. we know that if q E I?~~<~, then there is an invariant subspace, R’. 
for H obeying (i) v, E .F’, (ii) H restricted to F’ is unitarily equivalent to 
multiplication on L2(B. dx). By the last proposition. V’ c +y;,, so 
E,{ <I,,. = q,,, . L Since c;, = E, ,??Ic @ E, <,,, the theorem is proven. 1 

COROLLARY 3.5. Let u E x’ with 

1” Kcp. e ‘“$)I dt < cc. 
* 

Then o E &;,;. 

Proof: Since q has spectral measure G(x) d-x with G continuous. G must 
be supported on B. I 

Letting F(I) = (~7, e ~ifHp). we see that 

eat= {q?/F(C)EL’k (3.5) 

that is. there is no difference between choosing those vectors with F(t) E L’ 
and choosing those with (3.1) holding. This should be compared with a 
result going back at least to Kato (see, e.g., [ 261) 

cc = ($!I / F(r) E L2 1, (3.6) 

so L’ and L’ yield, in general, rather distinct spaces. We do not know how 
to characterize (u, 1 F(T) E Lp) for any p # 1, 2. 00 nor even if this closure is 
a subspace. 

COROLLARY 3.6. Suppose that H has a nowhere dense spectrum. i.e.. 
R\a(H) = R. Then 

&,,(H) = 0; 

i.e., any absolutely continuous space is recurrent. 

Proof: Immediate from Theorem 3.4. 1 

If H has nowhere dense spectrum and if e, # (O), then o,,,(H) = 
a(H / K,,) is a Canror set, i.e., a perfect nowhere dense set (perfect means 
closed with no isolated points; o,, always has no isolated points). Recall 
( 16 1 that perfect sets are everywhere locally uncountable. 

Naively, one might expect that urac is always nowhere dense, but 
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EXAMPLE 3.7. There exists an operator H with Z =qaC and 
u rat = (-co, co). For, in Appendix 2, we construct sets A with empty 
essential interior and essential closure all of R. Just take Z? = L’(A, dx) and 
H = multiplication by x. 

The decomposition of X to G%?&, Z& and ZPP behaves nicely under taking 
direct sums, i.e., Z&(H @ H’) = 2Z$(H) @ e,(H’), etc. This is not true of 
e,, and Z&, [although obviously ,&,,(H 0 H’) 2 q’,,(H) @&‘,,(H’)]. 

EXAMPLE 3.8. Let H’ be multiplication by x on L’(-co, co). Then 
Gi?&(H @ H’) =&,(H @ H’) for any H; i.e., H’ is able to eat up any 
recurrent absolutely continuous spectra. This is because the event for H’ is 
[R ] and that for H @ H’ is [A] U [R ] = [R ] for any A = the H-event. 

The situation is worse: 

EXAMPLE 3.9. There exist H, H’ on X and X’, respectively, so that 
Z = e,,(H), SY’ = <z%$(H’) but 

P’@ 2’ = 2&,(H @ H’), 

for by Appendix 2, there exist sets A, B each with empty essential interior so 
that A U B = R. Let .Z’= L2(A, dx), Z’ = L’(B, dx) and multiply both 
operators by x. 

The above examples say that within a purely abstract setting, Z&c is of 
limited interest but in concrete examples, where taking direct sums with 
abandon is not allowed, it is of interest. 

The final abstract result we will need is the following: 

PROPOSITION 3.10. Let ~1, q, E 27 Suppose that 

(i) qn + cp in X. 

(ii> J IcPn. eifHq)I dt < co, each n < 0~). 

Then cp E OF&. 

Proof. Let p,, be the complex measure given by 

Pu,@) = (V”3 EArpI. 

By (ii) each pu, is absolutely continuous, so if IAl = 0, then (o,,, E,rp) = 0. 
Since (9, EA cp) = lim,,(v,, E,cp), we see that cp is absolutely continuous. Let 
P be the projection on the span of (e-ifHq}. Replacing o, by Pq,, we see 
that there exist functions F(x), F,(x) E Lz(R, dx), so that 

(i) F,(x)&;(x) is continuous, 
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(ii) F,,converges in L2 to F(x). 

(iii) F’dx is the spectral measure for (o. 

Let (A 1 be the event determined by (x / F(x) # O}. Statement (i) says that 
F,,(x)F(x) vanishes on the essential frontier of A so (ii) implies that ‘4 is 
essentially open. Statement (iii) and Proposition 3.3 imply that cp E et,,, 1 

4. TRANSPORT AND SCHR~DINGER OPERATORS: SOME EXAMPLES 

Abstract spectral theory loses sight of the fact that operators of interest 
are typically acting on a concrete space, normally L’(R“. d“x) for some I’. 
Physics is often connected with the local structure in R” and much recent 
progress (reviewed, e.g., in 191) uses the geometry in R“. Of particular 
interest is 

G,“(t) = ilF(I.ul < R)e-““o?:,l. 

where F(A) is multiplication by the characteristic function of A. For 
example. the celebrated RAGE theorem (see, e.g., 126)) says that 
y E Kd,, :g K,< if and only if, for all R. 

1 .7 

2*.I., 
G,“(t) dt --t 0 

as T- co under the sole condition that F(lxl < R)(H + i) ’ is compact. 
something true for virtually all Schr6dinger operators. 

Let us introduce four subspaces (since G” tw < G” + G”, they are 
subspaces): 

(1) The transport vectors, denoted TRANS, being any u, for which 
there is a > 0 so that 

G,“,(t) = O(t- ‘“‘) 

for all N. 

(2) The flight vectors, denoted FLIGHT. being any cp for which 

G;(t) = O(t--,‘) 

for each fixed R and N. 

(3) The weak flight vectors, denoted WEFL, being any q for which 

)-= G;(t) dt < co 
-02 

for each fixed R. 
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(4) The Sinha vectors, denoted SINHA being any cp for which 

For each fixed R we claim inclusions of the form 

SINHA 
0 0 

TRANS c FLIGHT c WEFL 
0 

ec. 
0 

eat 

The first two inclusions are trivial. WEFL c SINHA follows from 
GiW) < II v II and WEFL c q,, follows from Proposition 3.10 with 
(P,, = F(]x( < n)q. SINHA cZ& is a result of Sinha (321, wo proves also 
that SINHA = Za,, if F(]xI < R)(H + i)-” is Hilbert-Schmidt for some k. 

One might guess that it is always true that WEFL =q,, on this basis, 
but the proof is not obvious. The problem is that Sinha’s result depends on 
the fact that Z”,, has a dense set of w for which 

for aEl ~1. But if 

for all rp, then w = O! Thus one needs to know properties of the eigen- 
functions of (H - i)-kF((xI < R)(H + i)-k to be able to conclude WEFL = 
&ac . 

Of course, “good transport” corresponds to TRANS = ZaC. Obviously 
qaC # {0) implies bad transport. 

Let us summarize what is known about these Schrodinger operators. 
( 1) Free operators. For H = -A, indeed for large class of functions of 

-iV [ 111, TRANS =Z. This observation is critical to the Enss theory [8]. 
(2) Two-body operators. It follows from work of Jensen and Kato 

[ 12, 131 that if v > 3, if V falls faster than any power, then TRANS =Z& 
for -A + V= H. From work of Perry [22], if V is globally smooth and 
dilation analytic, the same is true. For no other F’s is there even information 
on FLIGHT although Jensen and Kato prove WEFL =Z& if V has fixed 
power falloff at a rate depending only on v. For a large class of vs we know 
that H IO%?& E -A [4, 8, 21, 301, so qac =qc. 
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(3) N-body operators. Nothing is known about even WEFL but we 
claim that the spectrum is ordinary under very general circumstances 
because oat c [,Y, a) whenever the HVZ theorem holds. If wave operators 
exist, then SEC has a component unitary equivalent to -A + Z for some 
Laplacian. It follows that the H-event is that determined by (C, co) and this 
has empty essential frontier. Thus existence of wave operators implies that 
q,, = (O}. Perry et al. [23] have proven under wide circumstances that 
there is no thick point spectrum and no singular continuous spectrum. 

(4) One-dimensional periodic potentials. Davies and Simon [ 5 ] prove 
that TRANS = r. It also follows from their ideas that if V is asymptotically 
periodic as x--t f co or x -+ - co (distinct periodic potentials allowed). with 
O(]si ml ‘) approach, then iq,c = (0). 

(5 ) v-dimensional periodic potentials. Using the Davies-Simon method 
] 5 ] and results of Wilcox [34], one can show TRANS = E, the difference 
between r = 1 and v > 1 is that for v = 1 one knows that for many f’s. 
f(H).Y c TRANS but this is not known if v >/ 2 (see 130 1). 

(6) Limit periodic potentials. A limit periodic potential is one that is a 
uniform limit of periodic potentials, e.g., C a, cos (x/n) with C [anI < co. In 
[ 21, we will prove that generic limit periodic potentials have a spectrum 
which is a Cantor set. Such operators must have extraordinary spectrum and 
bad transport. By Corollary 3.6, .%&, = (O}, so WEFL = (O}; thus bad 
transport. Moreover, since a(H) is locally uncountable, most of u(H) cannot 
be the thin point spectrum. All that is left is extraordinary spectrum of one 
type or another. In [2], we will construct examples with ,p =T,, ; in 
general, we suspect that the low energy spectrum might have some thick 
point and the high enegy spectrum recurrent absolutely continuous. 

5. THIN AND THICK POINT SPECTRUM 

In ] 25 1, opp is defined to be the set of eigenvalues so Opp is the spectrum of 

H r n”,,. We make the following refinement. 

DEFINITION. 1 E app is said to lie in the thin point spectrum if and only if 
(A - t. A + t) n a,,, is countable for some t > 0. 1 E 6,, is said to lie in the 
thick point spectrum if (1 - t, 1 + t) n ‘spp is uncountable for all t > 0. 

In this section, we will prove some elementary but illuminating results: 

THEOREM 5.1. The thin point spectrum is countable. 

COROLLARY 5.2. The thick point spectrum is empty if and on@ if a,, is 
countable. 
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THEOREM 5.3. The thick point spectrum is a perfect set, i.e., closed with 
no isolated points. 

Before proving these, we note an illustrative example, 

EXAMPLE 5.4. Let B be the operator with a complete set of eigen- 
functions with distinct eigenvalues 1, which are the middle points of the 
intervals removed in the construction of the conventional Cantor set, A; i.e., 
1, are those points in [0, l] whose base three expansion consists of an 
arbitrary finite sequence of O’s and 2’s followed only by 1’s. Thus 6,, = 
upp U A. The thin point spectrum is opp, the thick is A. This shows that the 
thin spectrum may not have countable closure and that up0 and the thick 
point spectrum can be disjoint. 

Proof of Theorem 5.1. (Actually a standard result [ 14, 151 in disguise.) 
For each point A in the point spectrum, pick an interval I,, with rational end 
points so that A E I, and I,% n a,, is countable. Clearly u(Z, n B,,) contains 
the thin point spectrum. But since there are only countably many intervals 
with rational end points, there can be only countably many distinct I,. Thus 
(J(1, n a,,) is countable. 1 

Proof of Corollary 5.2. If a,, is countable, trivially there is no thick 
spectrum. If there is only thin spectrum, 6,, is countable by Theorem 5.1. 1 

Proof of Theorem 5.3. It is trivial that a limit of thick point spectrum is 
in the thick point spectrum. Thus we need only show it has no isolated 
points. Every neighborhood contains uncountably many points of 6,, but, by 
Theorem 5.1, only countably many points of the thin point spectrum. 1 

APPENDIX 1: SOME CANTOR MEASURES 

In this appendix, we describe some properties of certain Cantor measures 
illustrating aspects of recurrent absolutely continuous spectrum. The sets we 
are mainly interested in are fatter than the original Cantor set. There is an 
enormous literature on much thinner Cantor sets (see Carleson [3] and its 
extensive bibliography) but other than Salem’s beautiful notes [27], and 
references therein, we have located no literature on the question of most 
interest to us, the falloff of the Fourier transform, Nevertheless, given the 
classical nature of these questions, we have little doubt additional literature 
exists. We provide our discussion here primarily for the reader’s convenience. 

Let It,, q,... be a sequence of real numbers 1 < nj < co (eventually we will 
take the nj to be odd integers). 

We define a Cantor set S(n,) as follows: 
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From [0, 1 ] remove the open interval of size n; ’ about the point 4. Then 
remove the two open intervals of size f( 1 - n; ‘)n; ’ about the middle of 
each of the two remaining intervals. After j removals, there are 2j intervals 
left and at the (j + 1) step we remove the intervals of size 
2-9-J&1 - nJ’)]n,:;r about the center of these intervals. S(nj) is the 
complement in [0, 1 ] of the union of these open intervals. Occasionally, we 
will use S”‘(nj) to denote the union of the 2’ closed intervals left after j 
removals. 

We define a Cantor function C(nj, t) by setting it equal to 4 on the first 
interval removed, a and i on the two pieces removed at stage two, $,i, i, i on 
the next removal, etc. (the values chosen in the obvious way so that C is 
monotone increasing). C is extended to 10, I] by continuity. The Cantor 
measure. dv, is defined by 

We have: 

v( [O, (1) = C(t). (A. 1.1) 

PROPOSITION A. 1.1. (a) The Lebesgue measure of the Cantor set S(nj) 
is 

IS(n fi (1 -nj’), 

j= I 

(A. 1.2) 

where the product always has a limit, the limit being zero ~yand only if 

(A.1.3) 

(b) S is always nowhere dense, i.e., [0, 1 ]\S has closure [0, 1 J; indeed 
given any x E [0, 11, we can obtain it as a limit of both larger and smaller 
numbers in [O, 1 ]\S. 

(c) S is a perfect set. 
(d) If (A.1.3) holds, then v is mutually singular with respect to 

Lebesgue measure. 
(e) If (A.1.3) fails, then v is absolutel-v continuous with respect to 

Lebesgue measure; indeed 

dv= IS/-‘&dx 

with s?s the characteristic function of S. 

Proof: (a) The measure of SU’(nj) is clearly rl{( 1 - n; ‘). Since the SC” 
are decreasing and countable, and their intersection is S. the result follows. 
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(b) So’ consists of 2’ intervals of equal Lebesgue measure of total size 
at most 1 so given any point in S, there is a point of [0, 1 ]\S”’ c [0, 1 ]\S 
within 2-j- ’ of it. 

(c) Let I be any interval of S u). Then In Stk’ f 0 for each k, so by 
compactness, In S # 0. Given any point, x, in S, and m, first, find y, 6Z S 
with Ix- yo(<m-’ (use (b) for this). y0 is contained in some open interval, 
0, removed at step S,. We claim that without loss, we can suppose that 
x & o,,, for x is a limit of points both above and below it and it cannot be a 
boundary point of open intervals both above and below it (for these intervals 
will be both removed at some finite step at which point all intervals of S”’ 
have non-zero size). Since x g o0, we can find y, between x and 0, so that 
y, & S (use (b)). Let 0, be the interval in [0, 1 ]\S containing y, . Both 0, 
and 0, are removed at some finite step j. So’ will have a piece I between 0, 
and 0,) so there is an x’ E S n I. x’ # x since x is not between 0, and 0, 
and clearly (x -x’] < m-l: 

0, 00 

FIGURE 1. 

(d) Since v( [0, 1 ]\Sj) = 0, we have V( [0, l]\S) = 0. If 1 S ( = 0, v and 
dx are mutually singular. 

(e) Let C”‘(t) be defined by C’-“(O) = 0, dC”‘/dt = 0 if f 4 S(j); 
ISo)\-’ if t E So’. Then C”‘(t) = C(t) on [0, l]\S”’ from which we conclude 
that C(f) = limjda CU’(t) for all t. It follows that v is the weak limit of 
1 S”’ I-’ .5ZFsU, u!x. If ( S ( - ’ ( co, then by the dominated convergence theorem, 
(SU)(-l~‘,,,-,ISI-‘~~inL1-norm so ]SI-‘5%F~dxis also theweaklimitof 
(suy3-s~,dx. I 

Remarks. 1. The dichotomy that dv is either absolutely continuous or 
singular with respect to dx is illuminated (and proven if the nj are odd 
integers) by Kukurani’s theorem discussed in the next appendix. 

2. If nj+X aS j-Co, it is not hard to see that the Hausdorff 
dimension of S is exactly log 2/[log 2 - log( 1 - x-l)] since S”’ is made of 
2j intervals of size 2-j fl{(l - n;‘). In particular, for the sets discussed by 
Carleson [3], where x = 1, dim(S) = 0 and for those that will most interest 
us, where x = 03, dim(S) = 1. 

Of particular concern for us is the large t behavior of 

F(t) E 1 eiX’ dv(x). 
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We have: 

COROLLARY A. 1.2. (a) F(f) E L2 $ and onb if (A. 1.3) fails; explicitly: 

I.= ]F(t)]‘dt=(211) 
cc 

TI (1 -+I]-‘. 
j-l 

(b) F(t) is never L ‘. 

Proof: Equation (A.1.4) is just the Plancherel theorem. If F E L’, F E LL 
(since / F(t)1 < 1 is trivial), so dv = ] S]-‘SS a!~. Thus FE L ’ would imply 
Lc is continuous, which is obviously false. I 

Henceforth, let us suppose that each nj is an odd integer 

nj=21,+ 1; 1, E ( 1, 2,...). (A.1.5) 

It will be convenient to shift the Cantor set, measure, etc., by f unit so it is 
now in l-f, { 1. Thus dv is even and F is real. We henceforth do this withour 
changing notation. 

Let a”’ be the set of the nj points -lj, -lj + l,..., lj and map fl = Xz:, 52”’ 
into I-i,+] by 

f(a) 5 \“- aj/n, . . . ni 
,r, 

(i.e., use a variable base expansion). If we remove countable sets from Q and 
I-{, 41, f is l-l and onto (it is two-to-one on these removed countable sets). 
Let dp”’ be the measure on Qo’ giving weight 0 to aj = 0 and weight 
I/(nj - 1) to each of the other points. Let dp be the infinite product measure 
on R. We claim that 

4-4) =dr’P I, (A. 1.6) 

for any set A. To see this, let ,uj be the infinite product of ,u(‘),.,., ,~o’ and 
normalized counting measure on au’ I),..., let vj be the measure ] .Sj]-‘.Sii dx 
and note that 

vj(A ) = PjU- ’ tA I )* 

Equation (A.1.6) comes from takingjd co. As a result of this formula, 

F(t) 3 1 exp (it x aj/n, . . . nj) dp(a) 

is an infinite product; i.e., we have proven 
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THEOREM A.1.3. Zf(A.1.5) holds then 

F(t) = fi G,(t), 
j=l 

where 

(A.1.7) 

G,(t) = (21,)-l C exp(iru/n, *a * nj) 

ll=-lj 

Remark. By abstract nonsense the infinite product (A.1.7) must 
converge; this can also be seen concretely if we note that (1 - cos S) < fS*, 
and 

G,(t) = 1,’ ’ C COS(rU/n 1 * * * nj) (A.1.8) 
0=1 

so 

IG,(t)- 11 <Qt’/[n, .a. nj-J2. 

Thus (A. 1.7) converges absolutely since nj 3 3. 
We immediately prove 

(A. 1.9) 

COROLLARY A.1.4. 

where 

Zf nj-+ co, then 

ProoJ By (A.1.9) 

so 

Let tj = 2zn, *aa njpl. Then 

IF( > idly’) (A.l.lO) 

d= fi (1 -7~*/3~~) > 0. 
k=l 

lim (21,) F(tj) = - 1. j-cc (A.1.11) 
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and if nj-+ 03, then 

lim fi Gj+k(tj) = 1. 
j-+m ks, 

The corollary follows from noting 

Gk(fj) = 1; k=l )...) j - 1, 

by (A.1.8) and by (A.1.7) 

Gj(tj) = -(21,)- I. I 

The above result shows that if nj does not go to infinity, then F(t) does not 
go to zero at infinity. The next result will show the converse: 

THEOREM A.1.5. Let ti = 27~2, . . . nj-, as above. Then for 

ftj ,< t < ;tj,, (A.1.12) 

we have 

If(t)1 < (9/4)[min(lj- 1, ljJ -- ‘. 

Proof We claim that if 

(A.1.13) 

then 

~tj~t(tj+,-ftj (A.1.14) 

1 Gj- l(f) Gj(j)J < (9/4)[min(lj- 1, lj] -‘. (A.1.15) 

Since tj < tj+, , (A. 1.12) implies (A.1.14). Moreover (A. 1.15) implies 
(A. 1.13) since 1 G,Jt)J ( 1. Thus, we need only prove the above claim. 

By summing the geometric series, write 

G,(t) = (2Zj)-‘[b,(t) - 11, 

where 

with 

b,(t) = sin(+aj-, t)/sin($ajt) 

aj= (n, . . . nj)-*. 

Notice first that (as a sum of nj exponentials) 

j b,(t)1 < nj < 31,. 
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Thus 

< (42j2j-,)-'[)bj-,(t) bj(t)) + l + 31j + 31j-11 

< (41j1j_*)-‘[)bj-,(t)bj(r)l] + 714 mid/j, lj-*>I-' 

so we need only prove that (A.1.14) implies 

I bj- I(f) bj(f>l < 21j* 

Note that 

Jbj-l(l) bj(t)J 4 [Sin($fjt)]-' 

(A.1.16) 

and that (A.1.14) implies that 

$m,:’ <fait < 7c - $m;‘. 

Notice also that for 0 < a < n/2, 

,cy~m, (sin 0))’ < (sin a)-’ 

and that since sin XIX is decreasing on [0, n/2] and fm$: ’ < n/6, we have 

sin 

Thus 

as required. I 

lbj- l(t) bj(t)l < 2nj/3 < 21j 

COROLLARY A.1.6. lim,_, F(t) = 0 ifand onZy iflimj,, nj = co. 

There are two morals we want to draw from above: 

(a) F(t) has strange large t behavior of occasional bumps where F(t) 
is anomalously larger than at nearby points. The shift from ac to SC is not 
easy to see in qualitative behavior (except for the L2 norm). 

(b) If for any 1 > a > 0 

lim nj/(n, j-m 
, . . nj)” = 0 
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[e.g., ni - Cjk for some k], then F(t) does not even have power falloff. 
However, if nj grows fast enough, we can have power falloff, e.g., if nj = 3*‘, 
then fj - ni and nj- i = (nj+ i)ii4 so our result says that F(t) falls at least as 
fast as t-‘j4. 

We close this appendix by noting an intriguing connection, suggested by 
the above, which is misleading. Namely, for the above if S has Hausdorff 
dimension smaller than 1, then F(t) t) 0. This is an artifact of our choice if ni 
integral, for Salem 127) has proven that is nj = 8, a constant, and 8 is not an 
algebraic integer than F(t)-+ 0 (but for such a choice, dim(S) ( 1). 

APPENDIX 2: CONSTRUCTION OF A SET 

We will construct two sets A, B which are disjoint, A U B = R, so that 
each is essentially dense in R (equivalently, so that A is essentially dense in 
R but has empty essential interior). Let Zj = 2j-‘; ni = 21, + 1, j = 1, 2,... SO 

that C nj-’ ( cc and each nj is odd. Any x E R has a unique expansion 

x=m+ F aj/n, 
,r, 

..’ nj, 

where aj is one of -lj, -lj, -Ii + I,..., Ii and by convention we cannot have 
aj = - Ii for all large j (to get uniqueness) and m is an integer. We call these 
coordinates m(x), aj(x). These are clearly measurable functions of x. We will 
let 

A = (x 1 An odd number of al(x) are 0 ), 

B = (x / An even number or an infinite number of a.i(x) are O}. 

(Actually, by a Bore1 Cantelli lemma, the set with infinitely many aj = 0 has 
Lebesgue measure zero.) 

Let S be the set of points, x, with uj(x) = 0 for all large j. S is clearly 
dense in R. If we show that for every x E S and every j sufficiently large 

ICx - ljlnl .‘. nj, x + Ij/n, ... ni)f7Al >O, 

1(X - [j/n, ... nj,x+lj/n, ... n,)nBI > 0. 

then both A and B are essentially dense in S and so in R. Given x E S, pick 
j,, so that uj(x) = 0 for j > j, . Let Zj = (x - lj/n, ... nj, x + lj/n, . .. nj). We 
shall prove that Ilj nA 1 > 0, llj n B 1 > 0 for j > j, . We suppose that the 
number of a,(x), k = l,..., j - 1, which are zero is odd (a similar argument 
works if it is even). Consider all y with m(x) = m(v), a,(y) = a,(x). 
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k = l,...,j- 1; and a,(y) # 0, k>j. The set of such y’s lies in Ijn A. Its 
Lebesgue measure is 

j-l m 
Q n,’ n (1 -n;‘) > 0. 

j 

Similarly, the set of y with m(y) = m(x), a,(y) = a,(x), k = l,...,j, and 
ak( JJ) # 0 for k > j + 1 lies in Zj n B and has measure 

fin;‘fi (l-n,‘)>O. 
I j+l 

APPENDIX 3: KAKUTANI'S THEOREM AND PEARSON'S CONCTRUCTION 

In his construction of Schriidinger operator with singular continuous 
spectrum, Pearson [ 191 proved and applied the following result: 

THEOREM A.3.1 [19]. Let f,(k,y); O<k<l, -oo<~<co, 
n = 1, 2,..., be a sequence of function periodic in y of period 1 so that 

(i) inf,.,,,f,(k, Y) = d > 0. 
(ii) Ji f,(k, y) dy = 1 for all n, k. 

(iii) For all suficiently large N, f,,(k, Nk) is analytic in [0, 11; f,(k, y) 
is C’ in k and y jointly. 

Given a sequence Ni of positive numbers, let ,u,, be the measure on [0, l] 
given by 

&(k) = 1”1 h(k, N,k) dk. 
I 

Let 

a,(k) - - s ’ logf,(k, y) dy. 
0 

(A.3.1) 

Then the Ni may be chosen so that dp,, has a weak limit dp, and so that 
dp, is absolutely continuous with respect to Lebesgue measure if 

z: a,(k) < 03, O<k<l, 
n 

and mutually singular tf 

Ta,,(k)=co, O<k< 1. 
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Our point here is that this result is intimately related to a beautiful 
theorem of Kakutani [ 141 which is not as widely known among 
mathematical physicists as it should be (although its special case for 
Gaussian measures, which is a large chunk of the Feldman-Ha- 
jek-Shale-Bogolubov theorem is well known; see, e.g., (29, 3 1 I). This not 
only illuminates Pearson’s theorem but also allows two improvements: 
minimal “smoothness” applies and more importantly (i) can be dropped if un 
is replaced by /3, (below), which is the “correct” term. 

We begin by stating and proving Kakutani’s theorem. The mutually 
singular part of the proof is from Kakutani [ 141; the absolutely continuous 
part uses ideas of Segal [28]. 

THEOREM A.3.2 [ 141. Let 0,,I2, ,... be a sequence of measure spaces, 
and let ,un and v, be probability measures on 0, so that dv, = f,, dp,. Let ,u, v 
be the infinite product measure on R = )(,, R, and let 

Y,= d&r I (A.3.2) 

Then, ifn,, y, = 0, ,u and v are mutually singular and ifn,, y,, # 0, then v is 
absolutely continuous with respect to ,u. 

Remarks. 1. Since yn ,< 1 by the Schwartz inequality, lim,V+, ny y, 
always exists. 

2. We emphasize the remarkable fact that v is always either entirely pu- 
absolutely continuous or entirely p-singular (this is a kind of O-l law). 

3. If p’n is absolutely continuous with respect to v,, i.e., iff, is ac non- 
zero, then dp,, = g, dv,( g, = f; ‘) and 

SO that if n, y, # 0, the measures are mutually absolutely continuous. 

ProoJ Suppose first that n, Y,, = 0. If we can tind A, c R, so that 
v(A,) < 2-‘, p(Rb,J < 2-k, we take A = 0, U,“=, A, and find v(A) = 0, 
,~(&4) = 0 so we have mutual singularity. Let 

I 
N(k) 

A,= WI n f,@n)<’ * 
1 I 
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where N(k) will be chosen below. Then 

while 

Picking N(k) so ny yn < 2-2k, we have mutual singularity. 
On the other hand, suppose that n, yn > 0. We will prove that 

G, = JJy f, convergence in L’(dp)-norm as N --) co from which absolute 
continuity follows easily. Let N < M and write 

II~,-~,II:=lI~~-~~~\/G,+~II: 
G IKG - dcf>ll rllGll2 + II Gll21 

=2 [%+&.,-2~~]dp I 

=4 -4 $, Y,<4 (1 - JJ, Yn) * 

Since l-IN yn is absolutely convergent, it is guaranteed that 
lim,, FIN”+ 1 Y” = 1. I 

There is some similarity between the first half of this proof and Pearson’s 
proof. The relation between (A.3.1) and (A.3.2) is seen in: 

PROPOSITION A.3.3. (i) Let 0 < 0 < 1. Let y’,“’ = (f,” dp,,. Then 
n? yLe’ = 0 if and only if I-J? y,, = 0. 

(ii) Let a,, G -I log f, dp, . Then ny y, = 0 implies that C,, a, = 00. 

(iii) Suppose inf, f,,(o,,) = d > 0. Then C, a,, = 00 implies that 

IT Y, = 0. 
(iv) There exist a,,,~,,, v,, so that C,, a, = 00 but ny yn > 0. 

Prooj (i) Holder’s inequality says that In y!,@’ is convex in 19 and of 
course, yy=“’ = yy=l’ = 1. Thus, if B < i, we use y’,“’ < [Y,]~~, y, < [y!f’]” 
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with a = i( 1 - 19). If 8 > 4, we use 7:” < [y,]‘” -@ and y, < [vL@]” with 
a = 46. 

(ii) By Jensen’s inequality and the convexity of -log x, we have 

-log yn < $a,. 
(iii) We have that 

sup (-logy+;(l’*- l))/(jl- l)*=c< 03 
?’ > \ 77 
VFI 

since the function is obviously continuous away from 0, 1, 00, and has nice 
limits at 1, co. 

Thus, iff,(w,) > d 

-hJ~+t(f,- 1),<241 -dzi+u- 1)). 
integrating, we get 

fa, < 2c( 1 - 7,). 

Since ny ‘J, = 0 if and only if Cy (1 - y,) = co, the result is proven. 
(iv) Let Q,, be the two point space (0, l}. Let p,(O) = n-“; 

p,(l)= 1 --nn-*: v,(O) = 2-“n-*; V”(1) = 1 - V,(O) so f,(O) = 2- “: 
f,(l)= 1 + nW2 + 0(n-“). Then 

yn = 1 + 0(1/n’) 

so C( 1 - y,) < co and n y, > 0. But 

a,=(log2)n-‘+O(n-I) 

so Ca,,=co. I 

The only reason that Theorem A.3.1 requires hypothesis (i) is that 
Pearson uses condition (A.3.1) in place of the “right” condition (A.3.2). As 
Pearson notes, the key aspect of the Ni -+ 00 limit is that fi(k, N,k) and 
J;. + ,(k, Ni, , k) are “almost” independent. This is shown by the following 
result: 

LEMMA A.3.4. Let g, h be two measurable functions on [0, 1) with 
h E L 3c and g E L’. Extend g to be periodic on (-co, 00) with period 1. Then 

&i-m, ro’ 4x1 g(Nx) dx = [{; 4x1 dx] [r,’ g(x) dx] . 
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Proof: By adding a constant to g we may suppose 1: g(x) dx = 0. Since 

I,’ IfW) - gW)l dx G [N + 1 IIN c,’ If(x) - &)I dx 

we see that without loss we can take g to be C”. Since g is now L”O we can 
approximate h by a C” also without loss. But, clearly, breaking up [0, I] 
into [N] intervals of size l/N and one extra interval 

I j ’ h(x) g(Nx) dx 
0 

< q II gllm cx-yy-, [IQ)-NY)ll +~ll&ll~llm 

goes to zero as N+ 00. 1 

As a warmup to an improved version of Pearson’s theorem, we note: 

THEOREM A.35 Let f,(y) be a sequence of non-negative functions 
periodic in y of period 1 so that 

(i) j: f,(y) dy = 1 for all n, 
(ii) each f, E Lm. 

Given a sequence N, of positive numbers, let pu, be the measure on [0, 1 ] 
given by 

dc1, = fi f;:(Ni Y) dy. 
1 

Let 

A=-logj’\/%l;;jdy 
0 

(A.3.3) 

Then the N, may be chosen so that 4” has a weak limit dp, with no pure 
points and so that dp, is absolutely continuous with respect to Lebesgue 
measure if 

and is mutually singular if 
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ProoJ We choose 1 = N, <N, < . . . inductively as follows. Having 
chosen N,,...,Nj and m,,...,mj+l first choose mj so that 

I 

.(a+ I)/mj 

dpj < 2-j, a = 0. I,..., mi - 1 
a “nlj 

This can be done since dpj is dy absolutely continuous. Then, using 
Lemma A.3.4, pick N,i+, so that the following four inequalities hold: 

1442-j-* [I Y,, 
m- 1 

form= 1 . . . . . j, I = m,..., j; 

j+l 

<2-j-2 rl Y” 
??I+1 

for m = l,..., j. 

(b) 1.‘~’ [j?,fnCNn~)] [fj+,(Nj+,4’)-l]dq’~2-‘-* 0 
for i = I,.... j. 

for I= 1. 2 ,..., j; a = 0, l,..., m, - 1. 

By (b), the measures Q, have a weak limit dp,. By (c) and the choice of 

‘HI 

I 

.(a t I)/m, 
d~,,<2-‘+2~‘-‘+...~2~“’ 

. n/m, 

so that dp, has no pure points. Finally, we will show that (a) and (b) imply 
that 
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so, by the proof of Kakutani’s theorem, we can conclude the mutual 
singularity or absolute contrinuity. 

To prove (A.3.4), let A(m, I, j) denote the integral in that inequality. 
Inequality (al) implies that 

IA(m,Z,j)-A(m,Lj+ 1)1<2-‘-2 fI Y” 
mt1 

so we see that 

lA(m, z, I) -A(m, l,j)l< 1(1 y, 2 2-‘-2 
m+l j=l 

Next note that (a2) implies that 

(A.3.5) 

i+l 
IA(m~~~AYj+l -A(m,j+ l,j+ 1)lC-‘-* n Y” 

mt1 

so 

IA(m, 1, I) - A(m, m, m)l < + (2-” - 2-‘) f] y,,. (A.3.6) 
m+l 

Finally (b) implies that 

IA(m, m, m) - 1) < +(l - 2-“); (A.3.7) 

(A.3.5)-(A.3.7) imply (A.3.4). 1 

To extend Theorem A.3.1, we need 

LEMMA A.3.6. Letf(k, y) be a continuousfunction on [0, 11, x(-co, co) 
periodic in y with period 1. Let g E L* [0, 11. Then 

lim 
I 

’ g(k) f(k, A%) dk = 1’ (’ 
N-cc o gWf(k Y> dk dye 

0 0 

Proof Iffis a finite sum of products h(k) I(y), this is just Lemma A.2.6. 
But every continuous function is a uniform limit of such sums. 1 

From this result, by just mimicking the proof of Theorem A.3.5, we 
obtain: 
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THEOREM A.3.1. Let f,(k, y) be a sequence of nonnegative continuous 
functions on [0, I] X (- 00, 00) periodic in y with period 1 so that 

j’f.(C y)dy= 1 
-0 

all n, all k in [0, 1 1. 

Given a sequence Ni of positive numbers, let ,u,, be the measure on 10. 11 
given b?, 

dp, = 1’1 fi( y, Ni y) &. 
I 

Let 

Then the Ni may be chosen so that Q, has a limit dp, with no pure points 
so that dp, is dk absolutely continuous if c,& < co and so that it is 
singular if C P, = 03. 

Remark. This is not, strictly speaking, stronger than Pearson’s result 
since we take inf and sup over k but improvements are possible. 
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