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We consider Schrodinger operators H = - $A + V for a large class of potentials. 
V. We show that if Hy, = Eq has a polynomially bounded solution a, then E is in 
the spectrum of H. This is accomplished by proving that the spectrum of H as an 
operator on L* is identical to its spectrum as an operator on the weighted L’ space. 

1. INTR~OUCTI~N 

In this paper, we want to discuss eigenfunctions of Schradinger operators 

H=-fA+V (1.1) 

on L’(R“). We will deal with a wide class of potentials; typically we will 
require that V = V, - V- with V, 2 0 and V, E K’,?, V.. E K,,, where K,, 
is the class discussed in [2]: 

DEFINITION. If 1’ > 3, we say fE K,. if and only if 

If v= 2, we replace Ix-yl- (‘-*) by In Ix -y(-’ (and take a 2 1). If v =-. 1. 
K,. is the set of f’s with 

SUP 1 x _ ,x-y/<, If(~)l 4 < a. 

fE KjPC if and only iffg E K,, for all g E C~(R“). 
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This class is sufficiently large to include virtually all interesting Vs which 
lead to H’s which are bounded below. It is convenient since a Harnack 
inequality holds for such potentials [2]. 

We are interested in solutions, rp, of 

Ha,=Ea, (1.2) 

(we will discuss the sense in which this holds below) and, in particular, for 
which E (1.2) has a polynomially bounded solution. 

One direction is already well known. Generalized eigenfunction 
expansions of differential operators is a subject associated with Berezanski, 
Girding, Gel’fand, Kac and Maurin (see Berezanski [3] for references); the 
implementation of their ideas for Schrodinger operators is described in Faris 
[ 51, Herbst-Sloan [ 61 and Kovalenkc&Semonov [7] and reviewed in Simon 
[ 121. One consequence of this theory is the following (see [ 71 or [ 121). 

THEOREM 1.1. Let V, E K, , Ioc V E K,, and let H be the associated L2- 
Schriidinger operator. Then for every E > 0, (1.2) has a distributional 
solution v, obeying 

Ip( < C(1 + ]X])(“2)“+c (1.3) 

for H-spectrally almost every E. In particular, the set of E for which (1.2) 
has a solution obeying (1.3) is dense in the spectrum of H. 

Remarks. 1. If V obeys the above hypothesis, then H defines a closed 
quadratic form on Q(A) n Q( V,) (and CF(R”) is a form core [lo]) and 
the associated self-adjoint operator is what we mean by “the associated L2- 
Schriidinger operator.” 

2. If A is a self-adjoint operator, we say something holds “A-spectrally 
almost everywhere” if the set A for which it holds has an associated spectral 
projection which is the identity. 

Our goal in this paper is to consider the converse of this result, i.e., to 
show that if (1.2) has a solution obeying 

If?(x)1 < C(1 + IxlY (1.4) 

for some N, then E is in the spectrum of H. Surprisingly, except for [ 13, 141, 
this appears not to have been discussed before. We note that if polynomial 
growth is replaced by exponential growth, the result is not true as 
consideration of the case V = 0 shows. We also note that if v, obeys (1.2) 
and 

i ,x--y, 61 IP( d”y G (31 + I#’ (I-5) 

then automatically (1.4) holds by a Harnak type inequality; see [2]. 
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In Section 3, we will prove 

THEOREM 1.2. Let V, E KfC, V- E K, and V E L& and let H be the 
associated L2-Schriidinger Operator. Suppose that (1.2) has a distributional 
sollution. cp. obeying (1.4) for some N. Then E E spec(H). 

This, together with Theorem 1.1 immediately implies 

THEOREM 1.3. If V obeys the hypothesis of Theorem 1.2, then 

spec H = (E 1 (1.2) has a districutionaf solution obeying (1.4)/. 

Actually, the condition V E Lf,, is only needed for a “nice” meaning to 
the expression “solution of (1.2).” If V, E KFC, V_ E K,., then (see Section 
2) e--“’ defines a map with 

l(e-“‘g)(x)1 < CeCux’ (1.6) 

for every g E Cr, so that (o, e -t”g) makes sense if cp obeys (1.4). In Section 
2, we will prove 

THEOREM 1.4. Let q~ obey (1.4). Let V, E KjPC, V- E K,,, and suppose 
that (p “obeys (1.2)” in the sense that 

(9, e -“‘g) = eefE(rp, g) (1.7) 

for every g E Cr. Then E E spec (H). 

The basic methods we use in Section 2 involve another natural question 
which has not been previously considered. Let Li = {fi( 1 + x’)““fE L2\ 
with the norm 

llflls= (i( 
I,2 

1 + x2)’ 1 f (x)1" d”x (1.8) 

In Section 2, we will prove that for g E Con: 

II e-‘*g II6 G ~4’ II g/l, 
so that the semigroup e-(” can be defined on Li. We denote its generator by 
H,. In Section 2, we will prove 

THEOREM 1.5. Let V- E K,, V, E Kf”. Then, for any 6 

spec (H,) = spec (H). (1.9) 

For V’s going to zero at infinity sufficiently rapidly H, have been exten- 
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sively considered in the Agmon [ l]-Kuroda [8] theory. For this case, results 
close to this appear, for example, in Reed-Simon [9]. 

The point is that (1.7) implies that H,(o = Ep in operator for suitable 6. 
Thus E is in the point spectrum of H, and so by (1.9) in spec (H). Thus 
Theorem 1.5 implies Theorem 1.4. 

In Section 3, we prove Theorem 1.2 from Theorem 1.4 by proving Cr is 
an operator core for H,. In Section 4 we discuss H on the weighted space 
L*(iR”, e- *lx’ d”x) where the spectrum changes but, in particular, we prove 
that (1.4) for some N can be replaced by 

1 p(x)J < C, ealx’ 

for all a > 0. 
Some special cases of Theorems 1.1 and 1.3 can be found in [13, 141. 

Babbitt calls our Theorem 1.3 “a tight rigging.” 
It is a pleasure to thank B. Souiliard for raising the question of converses 

to Theorem 1.1. 

2. SPECTRUM ON POLYNOMIALLY WEIGHTED SPACES 

The basic facts that we will use about Schrodinger semigroups are: 

(i) exp (-tH) has an integral kernel bounded by 

c t-(utdef.4 c (2.1) 

for all E, some A and C depending on E. 
(ii) If H, = - fd and H’ = H, + 2V and (e-‘“)(x, y) is the integral 

kernel for e-I”, then 

e-‘“(x, y) < [eefHo(x, y)] “* [eCfH’(x, y)] ‘*. (2.2) 

Claim (i) follows from the Dunford-Pettis theorem and the fact that the 
semigroup is bounded from L’ to L”O with norm given by (2. l), [4, 111. Fact 
(ii) is just the Schwartz inequality in path space [ 111. 

From (2.2), we conclude that for fE CF, f > 0: 

(1 +x2)’ epfH[(l + x2)-“f] 

< (e-‘*y)1/2{(1 + x*)~’ eefHo(l +x2)-2sf}u2 

pointwise, so that if ]]A (]s,s is the norm if A is a map of Li to itself, then 

Ile-f”lls,s < lle-f”‘llA!20 lle-LHW~.2s (2.3) 
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(this can also be proven by complex interpolation). Using the explicit 
integral kernel of ePrHO and the fact that 

llf* gllz G IlflL II ‘!I11 

(with * convolution), one easily sees that for 6 > 0: 

lW”OIl 26.26 < 1 + ct2” 

so that we have 

PROPOSITION 2.1. If V, E KiPC, VP E K,., then e- “’ defines a bounded 
map of Lx to itself obeying 

Ile-‘“II,,, < Cc”‘. (2.4) 

In many ways, the main result of this paper is 

THEOREM 2.2 (E Theorem 1.5). The generator, H,, of e -I” on Li obeys 

spec (H,) = spec (H) 

Proof: As a preliminary, we note that Q(H) c Q(H,) so 

(H-z)-’ v (2.5) 

is bounded as an operator on L* for any z & spec (H). - 
Now. let -denote the normal conjugation and note that, with A’ E (A *) we 

have 

H=H*=jj=H’ 

so that 

and thus 

Hf, = H_, 

((H,-z)-‘}‘=(H-~-z)-~ 

so by interpolation, we see that if z & spec (H,), then z @ spec (H). 
To prove the result, we only need to show that if z & spec(H), then 

z & spec (H,). By the interpolation and duality argument, we can suppose 
that 6 is positive integer, We give formal commutator manipulations which 
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are easy to justify. Let g = (1 +x2)“* and we proceed inductively in 6 
(which is assumed integral). Then, if L GC spec (H): 

g(H-z)-‘g-‘=(H-z)-‘+ [g,(H-z)-‘]g-’ 

=(H-z)-‘-;(H-z)-‘dg(H-z)-‘g-’ (2.6) 

f(H-z)-‘V. (Vg)(H-z)-‘g-l 

By induction in 6, dg(H - z)- ’ g- ’ and Vg(H - z)- ’ g- ’ are bounded on 
L*, so by (2.9, g(H- z)-‘g- ’ is bounded on L*, i.e., (H - z)- ’ is bounded 
on Li. I 

As noted before, this implies: 

THEOREM 2.3 (E Theorem 1.4). Let V, E K:C, V_ E K- and suppose 
rp E L?, for some N obeys 

H-,cp = Erp 

then E E spec (H). 

In the next section, we will need a small extension of the above argument: 

THEOREM 2.4. Let 6 > 0. Suppose that (p E Li lies in D(H,). Then 
VcpEL;. 

ProoJ: Let g = (1 + x2)*‘*. For simplicity suppose -1 & spec (H). 
Writing 

gVtp=gV(H+ l)-‘g-‘[g(H+ l)rp] 

and noting that g(H + 1) cp E L* by hypothesis we see that it suffices that 
gV(H + l)-’ g-i is bounded on L*. Since 

[g,V](H+ l)-‘g-I=-(Vg)(H+ 1)-‘g-’ 

is bounded by Theorem 2.2, we see that it suffkes that Vg(H + 1))’ g-’ is 
bounded. But, by (2.6): 

Vg(H + l)-’ g-’ =V(H+ l)-‘-;V(H+ l)-‘(dg)(H+ 1)-‘g-’ 

+ V(H + 1)-’ V . (Vg)(H + 1)-‘g-’ 

and each term is bounded on L* since V(H + 1)-l, V(H + 1))’ V and 
g(H + l)-‘g-l are all bounded. I 



SPECTRUM OF SCHRijDlNGEROPERATORS 353 

3. CORES ON POLYNOMIALLY WEIGHTED SPACES 

To relate distributional solutions of (1.2) to operator solutions we will 
need the following result which follows the “semigroup version of Kate’s 
inequality” [ lo]; we remark that because of the V_ possibility, this proof is 
new even in the case 6 = 0: 

THEOREM 3.1. Let V, E KrC, V- E K,,, VE Lf,,, and let 6 > 0. Then 
Cr is a core for H,. 

Proof. e -IHg is bounded and ePZ” (for 6 = 0) is holomorphic, so by the 
Stein interpolation theorem, ePtHa is a holomorphic semigroup so 
Ran (e -‘“a) c D(H,) and if q E D(H,), then H8e-IH&p -+ H,rp in Li. Since 
Ran (e -IHb) c L”, we conclude that L” nD(H,) is a core for H,. Let 
gECC with 0 <g ,< 1 and g= 1 near x = 0. Let g,(x) =g(x/n). Let 
o E L” /? D(H,). Then 

in Li and 

W gnv) = g,Hv + (4,) v + W’g,) . Vg -+ Hv 

in Li since Vq E Li by Theorem 2.4. 
As a result, Lm f~ D(H,) f7 (compact support) is a core for H,. Now 

mollify and use V E Lf,,, ~1 E L”O to approximate by functions in Cr. ! 

THEOREM 3.2 (= Theorem 1.2). Let V, E K]?, V_ E K,., V E Lf,,. Let 
qELT,forsome6>Oandobey 

for all g E Cr (i.e., Hu, = Ey, in distributional sense). Then p E D(H_,), 
H-,cp = Eu, and thus E E spec (HP&) 5 spec (H). 

Proof: Since CF is a core for H,, (3.1) holds for all g E D(H,). Thus 
~7 E D(H,*) but H; = He,. 

4. SPECTRUM ON EXPONENTIALLY WEIGHTED SPACES 

In this final section, we want to prove the following which generalizes 
Theorem 2.2: 

THEOREM 4.1. Let V, E KrC, V_ E K,.. Then there exists a D 
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depending only on V so that if (1.2) has a solution (in the sense 

(P, e -‘“g) = eCtE(a), g) for all g E Cr) obeying 

1 
e-2a’x’ Itp(x)l* d”x < oc) (4.1) 

then 

dist(E, spec (H)) < 2Da(jEI”* + 1) + [a’ + va]. (4.2) 

In particular, if (4.1) holds for all a > 0, then E E spec (H). 

ProoJ: As in Section 2, eetH defines an exponentially bounded semigroup 
on L:,, = (IfI J” e-2a’x’ IfI’ d”x < co }. We need only show that if E fails to 
obey (4.2), and E @ spec (H), then g(H - E)-’ g- ’ is bounded on L*, where 

g(x) = exp(-a vC?Tl) 

Let v, E Cr, let a = 1) g(H -z)- ’ g- ‘q~ 1) (which is finite) and apply (2.6) to v, 
to get 

But by elementary calculations 

II [&I g-’ IL < a* + w 
lIPgIg-‘II, 0 

and 

ll(H-z)-’ VII <D[((z( + l)“* I [dist(z, spec (H))]-‘, 

where D is H-dependent. If Q < 1, we see that g(H - z)-’ g is bounded. 1 

Notes added in proof 

1. J. Rauch has pointed out that we neglected to prove that (H--r)-’ is the inverse to 
H, - z. This can be proven as follows: by our semigroup definition of H,, it is true if Rez is 
very negative and thus by analyticity, and by the fact that the L2 spectrum of H is a subset of 
R, the result is true for ah z in the resolvent set of H. 

2. A slightly stronger result than Theorems 1.2, 1.3 holds; namely if the eigenfunction is 
not in L2, then E must lie in the essential spectrum of H. For our argument shows that if E is 
an isolated point of spec (H), the projection P= (,r-E,-r (H - z))‘dz/(-2ni) is bounded 
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from f.: to L.6 and is the spectral projection for any H,. If its range is finite dimensional, then 
Pl.LiI = PIL’I so any function in PILi] is in L’. 

3. Yu. Orochko has kindly pointed out that 1. Schnol (in Dokl. Akad. Nauk. 89 (1953). 
41 l-413. and especially in Math. Sb. 42 (19.57), 273-286) proved Theorems 1.2. 1.3 and 4.1 
in case V is bounded below. His results appear on pages 176-183 of the English translation of 
1. M. Glazman’s book “Direct Methods of the Qualitative Spectral Analysis P’ Differential 
Operators.” Davey & Co., 1965. By using results from 12 I. one can extend Schnol’s method 
to treat the general case discussed in this paper and the extension noted in Remark 2. above. 
Schnol’s proof is more direct than ours. 
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