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RESEARCH ANNOUNCEMENTS 

ABSENCE OF SINGULAR CONTINUOUS SPECTRUM 

IN tf-BODY QUANTUM SYSTEMS1 

BY P. PERRY2,1. M. SIGAL AND B. SIMON 

ABSTRACT. For a large class of potentials including arbitrary bounded potentials 
with r""2—e falloff and also allowing suitable local singularities and slower falloff, 
we demonstrate that the singular continuous spectrum of iV-body quantum 
Hamiltonians is empty. We accomplish this by extending Mourre's work on three 
body problems to JV-bodies. 

We want to consider here multiparticle Schrodinger operators, i.e. the 
Hamiltonian operators of JV-body quantum systems. Given a function, Vy9 on 
Rv for each pair y C {1 , . . . , N}, the operator 

S = -£(2m/r
1A|. + 2:F7(r7) (1) 

1=1 7 

on L2(RNv) is the Hamiltonian before removal of the center of mass. In (1), we 
write r G RvN as (rt,. . . , rN); let Â  be the Laplacian with respect to r. and if 
7 = 60» w e w r i t e r

y
 = rt " rf I f o n e decomposes L2(RNv) = H ® Hcm with 

the first factor functions of ry and the second functions of R = (Sm^-^Sm^.), 
then H = H ® 1 + 1 <8> Tcm with Tcm = (22m.)"1 A^ (see, e.g. [10]). H is 
the Schrodinger operator we want to discuss. There are three main features of the 
spectrum of H which one wants to establish in cases where Vy has suitable falloff 
at ry —* oo 

(i) Point spectrum can only accumulate at thresholds. 
(ii) H has no singular continuous spectrum. 
(iii) Scattering is complete. 
Thresholds are defined as follows: Let a be a partition of {1 , . . . , N} 

and write y C a if y is a subset of one of the clusters in a. Write H = H(a) + 
1(a) with 1(a) = S7<?fl Vy and write H = Ha ® Ha with the first factor functions of 
ry with y C a and the second functions of differences of centers of mass of dis
tinct clusters in a. Then H(a) = Ha <g> I + / <g> Ta: H

a is the Hamiltonian of 
the internal motion of the clusters and Ta the kinetic energy of motion of the 
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clusters relative to each other. Eigenvalues of some Ha with a¥zal, the one 
cluster partition, are called thresholds. 

In the 1950's the first general results for the simplest case N = 2 appeared 
and during the past twenty years, the case N = 2 has been extensively analyzed 
(see [10], [11] for a review). FaddeeVs celebrated work [3] dealt with the so
lution of (ii) and (iii) in case N = 3 but even in that case Faddeev required 
technical conditions on Vy roughly requiring r~2~€ falloff and that certain com
pact operators depending linearly on Vy not have 1 in their spectrum (there has 
recently been progress on removing this last restriction [7]). Note that these 
conditions are now known to imply that the point spectrum has no negative ac
cumulation points, partially solving (i) [2] , [15]. 

There have been solutions of (i)—(iii) for N > 4 assuming strong unproved 
hypotheses on the various Ha [12]. As for results with assumptions only on the 
Vy9 we know of three types: (a) solutions of all three problems by Iorio and 
O'Carroll [5] when the Vy have small enough norms in suitable topologies; 
(b) solutions of all three problems by Lavine [6] when all Vy are repulsive; 
(c) solutions of problems (i) and (ii) by Balslev and Combes [1] and of (iii) (for 
"generic" short-range P s in the Balslev and Combes class) by Hagedorn (N = 4) 
[4] and Sigal (all N) [13] when the Vy have rather strong analyticity properties. 
In cases (a) and (b), no Ha can have any eigenvalues. Case (c) includes the im
portant special cases of Coulomb and Yukawa potentials. Prior to our work re
ported here, there were no results depending only on the P s even when all Vy% 
were C£° functions of ry. 

We consider functions V on Rv with V = Vx + V2 + V3 so that the fol
lowing six operators are compact after being multiplied by (1 - A) - 1 : 
(1) ( l + * a ) F i ; < 2 ) F2 ;(3) F3 ;(4) (1 + x2) VF2; (5)(1 + *)VF3; 
(6) (1 + x2) VVK3. Roughly speaking Vx allows arbitrary potentials with 
r~2~€ falloff and V2, V3 allow slower falloff as long as derivatives falloff suf
ficiently rapidly. Our main result is 

THEOREM (ARBITRARY iV). If all Vy are of the above form then H has 
empty singular continuous spectrum and point spectrum can only accumulate at 
thresholds. 

Our proof is based in part on ideas in a remarkable paper of Eric Mourre 
[8] preprinted in January, 1979. Mourre focused attention on estimates of the 
form 

EABEA>aE2
A+EAKEA (2) 

where EA is a spectral projection for H, K is compact, a > 0 and B = i[H, A] 
with A = -(//2) (x • V + V • x), the generator of dilations. Mourre requires 
additional technical hypotheses to which we return shortly and demands (2) hold 
for A, a sufficiently small neighborhood of any nonthreshold points. It is also 
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necessary that the closure of the thresholds be countable: this follows inductively 
if (i) is known for all subsystems. (2) and the technical hypotheses imply that 
(i) and (ii) are valid. 

Mourre's hypotheses (and ours, also) require that D(H) = DiH0) (H0 = -A 
on H). One then forms the spaces f/y = D(HH2) = D(H{{2) for ƒ = ±2, ±1, 0 
(the bar denotes the completion necessary for ƒ < 0). Mourre requires that B be 
bounded from H+2 to H and that [A, B] be bounded from H+2 to ff_2. We 
have improved the required technical hypotheses to only needing that B is 
bounded from H+2 to H_x- In fact our hypotheses on Fare precisely chosen to 
get [A, V] and [A, [A, V\ ] bounded on the proper spaces. Our improvement 
here allows nonsmooth F's where Mourre does not. 

Mourre also proved (2) for systems with N = 2 and N = 3 but his method 
is special to these N. Our main new ideas involve the proof of (2) for general N. 
The proof is not difficult but is unfortunately complicated. Let us sketch the 
ideas under the assumption that each Ha has only a finite number of distinct 
eigenvalues each of them having finite multiplicity (this assumption while not 
necessary allows considerable simplification in the proof; see [9] for full details). 
To prove (2) we only need to show that for any X ^ thresholds, there is an fx 

which is identically 1 near X so that 

fx (H)Bfx(H) *? % dist(X, thresholds) fx(H)2 (3) 

where ^ (and similarly =) means the inequality (resp. equality) holds, up to a term 
which is compact plus a term whose norm can be made arbitrarily small by 
shrinking the support of fx suitably. 

Our proof requires the notion of a-compact operator. Operators, 0, com
muting with the momentum of relative motion of the clusters in a are called 
a-fibered. Such operators have a direct integral decomposition with respect to the 
tensor product Ha ® Ha with fibers 0(pa) acting on Ha. O is called «-compact 
if it is a-fibered, if the fibers 0(pa) are compact on Ha, and if pa —* 0(pa) is a 
norm continuous operator vanishing in norm at infinity. A "typical" «-compact 
operator is (H0 + l ) " 1 ^ ) where P(a) = i* <8> / and Pa = projection onto the 
point eigenvectors of Ha, which we are assuming is finite rank. For a = ax, we 
make the convention P(ax) = 0. 

0-compact operators have the following properties: (1) they are closed 
under norm limits; (2) any «-compact operator is a norm limit of «-compact op
erators with O(*)GC0" and with 0(pa) having range and cokernel lying in some 
/^-independent finite-dimensional space; (3) if A is «-compact, then, for a^ax, 
Üm|Aj-o 1 1 ^ ) *AW*))U = 0> where P(aj = 1 - P(a) and |A| = Lebesgue 
measure of A; (4) if « ^ b and A is ^-compact, then lim,Ah>0 \\AEA(Ha)\\ = 0; 
(5) if A is «-compact and B is Z>-compact, then AB is « U b compact; (6) if A is 
«-compact and B is bounded, «-fibered with continuous fibers, then AB is «-com
pact. 
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In the above a C b means that the partition a is a refinement of b and the 
symbol a U b is union in the resulting lattice of partitions. Given the approxi
mation property (2), the proofs of the above properties are not difficult. 

In [14], Simon proved that 

f(H) = Kf + j:Ja2f(H(a2)) (4) 
a2 

for any continuous ƒ going to zero at infinity. In (4), K? is a compact operator 
depending on ƒ, the sum is over all partitions with two clusters and the ƒ's are a 
suitable partition of unity on R^N~^V. In exactly the same way one finds 

f(H(ak)) = Kf(ak)+ £ ;afcflfc+I f(H(ak+l)) ( 5 ) 
<*k+lCak 

where ak has ^-clusters, the sum is over all k + 1-cluster partitions and K^(ak) is 
d^-compact, in fact K^(ak) (HQ + 1) is ^-compact. Given N functions fx C 
f2 C • • • C fN (where ƒ C g means 0 < ƒ < l , 0 < g < 1 andg= 1 on supp ƒ), 
we write 

rimed)=fma$ p(-aù+/»«•)) ̂  4n w ) 
and then expand the second term using (5). The net result is 

A(H(«i)) = Z WaùffiH'i)) p(ai> + MiatfiQUaft P(at) K*+i{aJ\9 (6) 

where TV, M are bounded by combinatorial factors. By successively shrinking the 
supports of fN, then f N _ t , . . . , we can be sure that all the MfPK terms have 
small norm, using property (3) of 0-compact operators, or (for a = ax), are com
pact. For a =£ by (H0 + 1)" 1P(a)P(b) is a fixed a U ̂ -compact operator and either 
a =£ a U b or b =É a U 2> so the cross terms in f\ have small norm by property (4) if 
fN has small support. Thus 

Similarly 

fxmx)) # » i ) ) T Z N(atf(H(fit)) P(a() BP^fMaj) N(a()*. 

But B=B°i®I + 2T(at) + 27<?fl. K/7 with W7 = i[Vy, A] and T(c) = I ® r c . 
As in Mourre's paper, ̂ .P^.) (öa' ®I)P(ai)fi = 0 for/) having small support 
(expand P(ûf.) into individual projections and control diagonal terms by the Virial 
theorem and off-diagonal terms by shrinking support). (H0 4- l)"""1 P(ai) 
Wy(H0 + l)""1 is at U 7 compact so those terms are small by shrinking/). Fin
ally, by shrinking/), 

ƒ)(#(*,)) P(aù T{at) PiatfflKjii)) > K dist(X, thresholds) ftP
2ft 

so (3) results. 
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