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Abstract. We present a simple geometric method for estimating total cross-
sections in two-body and more generally two cluster scattering. We discuss a
variety of aspects of total cross-sections including large coupling constant
behavior.

1. Introduction

The total scattering cross-section is one of the basic objects in a quantum
scattering problem. Nevertheless, there has been relatively little rigorous study of
it until recently and, even in the physics literature, there appears to be no
discussion of some very basic questions. For example, let σ(k V) denote the total
cross-section for scattering involving the pair ( — f z l , — f z l + F) at incident
momentum k. Except [37], we know of no study of the large g behavior of

σ(k;gV). Here we will study this question or more precisely, the growth of

$σ(ke;gV)dk\ and obtain a bound (see Sect. 4) by Q(v~1)/(α"υ if F~|*Γα at
α /

infinity in v dimensions with

α>i(v+l) . (1.1)

[(1.1) is needed for σ to be finite.] In some special cases, we will obtain a lower
bound with the same power behavior (see Appendix 2).

A second question which we mention explicitly is the finiteness of the total
cross-section (including scattering into charged clusters or more than two clusters)
for Coulomb scattering with two cluster initial state with both clusters neutral.
Again, we know of no previous results on this problem, although Combes has
informed us that he and Tip [12] have obtained similar results with different
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methods and we expect that the work of Amrein et al, discussed below, could be
extended to handle these situations.

One reason for the small amount of literature on the subject of total cross-
sections is that it would appear that time independent methods treat the problem
en passant. After all, the total cross-section at fixed incident energy but averaged
over incident angle is just the Hubert-Schmidt norm of the on-shell T-matrix
which is simply described in terms of continuum eigenfunctions. In particular,
Kuroda [34], as a by-product of his analysis of eigenfunction expansions, obtained
sufficient conditions for the T-matrix to be in the trace ideal Jp. His conditions
cannot be much improved since there will be examples with only slightly less
power falloff for which the Born term in the T-matrix is not in Jp. In addition,
Agmon [1] under suitable smoothness hypotheses on V has proven continuity
(and thus boundedness) of T away from the forward direction and thus bounded-
ness of the non-forward differential cross-section; Agmon only needs | x - 1 ~ ε

falloff on V (together with greater falloff on derivatives).

These consequences of the time-independent theory are not the end of the story
for two reasons: first there is no definitive time independent theory for general N-
body systems, especially systems with Coulomb potentials. Moreover, even in the
two-body case, the time-independent theory is unsatisfactory in the sense that one
solves the Lippman-Schwinger equation by appealing to a Fredholm alternative
and for this reason, one has no control on the size of the solutions and of the T-
matrix that is, one knows σtot is finite on the basis of Kuroda's work but except in
special regimes (large energy or small coupling where the Born series converges)
one has no idea of how large σtot can be. In particular, control on the growth for
large coupling seems unlikely by conventional time-independent methods.

The Kato-Birman trace class method seems a likely candidate controlling σtot,
expecially given the work of Birman and Krein [8] which proves that the T-matrix
is trace class and thus Hubert-Schmidt under suitable hypotheses. In fact, one can
control the large coupling constant growth with this method but only under a
somewhat stronger hypothesis than (1.1), viz. α> v. We do this in Appendix 3. We
also note that for central potentials, one can obtain information by a partial
wave/phase shift analysis see Appendix 2. Neither of these methods seems
particularly well-suited to multiparticle situations.

Our approach in this paper is motivated by work of Amrein and Pearson [4]
(extended to multiparticle situations by Amrein et al. [5]) who use a time-
dependent approach. One of our initial motivations was to try to make their
results more transparent and to analyze various questions left open by them.

We feel we have succeeded in our goal in making the bounds transparent. Our
success is based on exploiting recent trends in rigorous scattering theory (see e.g.
[18, 45, 46, 19]) which exploit two related but distinct aspects: time-dependence
and geometry. In some sense, we have added geometry to the time-dependent
approach of [4,5].

Our basic formula for studying σtot is:

\\(S-l}g\\2=\σtot(k)\g(k)\2dk. (1.2)
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In (1.2), we have a fixed incident direction e in mind and g is a function G of \-e
alone. σtot(fc) is the total cross-section with initial wave number ke, g is the one-
dimensional Fourier transform, i.e.,

0(x) = G(x e)

1/2 ] e-ίkyG(y)dy

and we require that suppgd(0, oo). In (1.2) S is the ^-operator and 1 is the identity
operator. Of course, since gφL2, there is a question of the meaning of "(S— 1)0".
We interpret ||(S-1)0|| as

lim 11(5- 1)0ΛΛ | | = IKS- 1)011 - (1.3)
jR-»oo

The limit exists for convenient cutoff functions hR, e.g.,

Our fundamental point of view is that (1.2) is a definition of σtot. One can
present various "scattering into cones" [17, 28] arguments to justify (1.2) from a
geometric point of view. An additional point is that one can check (1.2) in two-
body situations when one uses the more usual definitions of time-independent
scattering theory

with / given in terms of asymptotics of continuum eigenfunctions. This is
described in Appendix 1.

Given (1.2), it is easy to estimate σ t o t; one essentially uses the interaction
picture formula for S :

S-l=z(iT)* dίeίtHVe- (1.5)

to obtain

/ C ° \\Ve-tB°g\\dt\ . (1.6)
» /

In Sect. 2, we use this formula and (1.2) to obtain bounds on σtot averaged over
small intervals in initial momentum. We obtain, up to logarithms, the right
borderline for the changeover from finite to infinite σtot and also the right (i.e., E~l)
large energy behavior. (1.6) has the interpretation of bounding σtot by adding up all
particles scattered out of the beam even those only virtually scattered out.
Interference between particles scattered out and the beam is included since we
have taken (J || ... || dt)2, not j || . . . ||2 dt.
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In Sect. 3, we exploit the Kupsch and Sandhas [33] idea that

for any function of compact support, j, so, as in (1.6):

„ Λτj, itH Π Λ 2

-(l-fiH^e-^glldt] . (1.7)
/

In particular, if j— 1 on the support of F,

\ 2

(1.8)

V has dropped out of the estimate in (1.8) which allows us to obtain bounds only
depending on the size of supp V. We obtain improvements on the results of Amrein
and Pearson [4] who used related ideas. (1.8) has the physical interpretation of
counting up the particles in the incident beam which enter the region of interaction
and suppose all are scattered in order to bound the actual number scattered.

In Sect. 4, we combine the ideas of Sects. 2 and 3 to bound the large g behavior
of the cross-section for scattering of — \ A + gV. As we explain in Sect. 5, the large g
behavior is connected with the classical limit where we feel there are interesting
open questions. Finally, in Sect. 6, we discuss multiparticle scattering with two
initial clusters.

This paper has a number of appendices. The first discusses scattering formulas
in general dimension v which are not as one might naively guess since factors of
£(v-3)/4 ancj £(v-3)/2 enter naturally! In particular, we find that in four dimensions
the small E behavior of σtot when there is an s-wave resonance is E~3/2(ln£)~2.
The remaining appendices are not really appendices in the usual sense of
containing primarily technical or derivative material. Rather, they apply methods
other than the one basic to the paper itself [depending on (1.2)] so we dub them
appendices for propagandistic reasons ! In Appendix 2, we use Calogero's variable
phase method to get lower bounds on the large g behavior of σtot for scattering
from — A +gV which show that the power we find in our upper bounds in Sect. 4
cannot be improved. In Appendix 3, we apply the Birman-Krein theory and, in
Appendix 4, Kato's monotonicity theorem.

We end this Introduction with a list of certain open questions which we feel are
interesting given what we have done in this paper.

(1) Hard Core Upper Bounds. Fet i^R denote the family of positive potentials
supported in the ball of radius R. For fixed k, we almost prove the bound

(1.9)

for all v ̂  3 and c independent of R and Fe i^R in the sense that in Sect. 4, we prove
β

(1.9) for J σtot(k, V)dk for every a<β and R^R0 >0 (but with c dependent on α, β,
y.

and jR0) and, in Appendix 4, we prove (1.9) for R smaller than some fixed jR0. Thus,
we can define a function

, (1.10)
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where τv_ί is the volume of the unit v — 1 dimensional ball. That U is only a
function of kR follows from the scaling relation Theorem A. 1.1 in Appendix 1.
(1.9), of course, says that

U(kR)^dv. (1.11)

One question is to verify (1.11) since we have not quite done that because of the
necessity of averaging. A much more interesting conjecture we make is the
following: Let H(kR) denote (τv,ίR

v~1)~ίσfot(k) where σ*t(k) is the total cross-
section from a hard sphere (Dirichlet boundary condition) of radius JR. One might
think that

that is that the largest cross-section occurs for the 'largest" V in i^R but as we
explain in Sect. 5, the best possible bound for large kR is only

U(kR)^2H(kR). (1.12)

We remark that in Appendix 4, we prove (1.120 f°r kR small and v^2: this is,
however, somewhat special since in that limit (1.120 holds partial wave by partial
wave when V is spherically symmetric and this is certainly false for kR large. We
also note that for fixed smooth Vei^R, σtoί(/c, F) ~ l//c2 for large k while (see
Appendix 1)

lim H(kR) = 2 (1.13)
kR-+cc

and that if (1.11) holds, then (1.12) will hold with H(kR) replaced by cH(kR) for
some c. Finally, we note that (1.120 is felse f°r v~ 1 where (with τ0 = 2)

H(kR)=l

but where U(kR) = 2 once kR is sufficiently large (for [τ~ Vtot(/c, VJ] = I- Reί(k)
with ί the transmission coefficient, ί = 0 for hard core potentials; once kR is
sufficiently large, Ret = — 1 is allowed). However (1.12) is true in one-dimension it
is an open conjecture in higher dimensions.

(2) Classical Limits and Classical Upper Bounds. Let σn(p, V] denote the total
cross-section for incident k — h~lp and for scattering for the pair (—^h2Δ + V,
— ^h2A). As we explain in Sect. 5, we believe that

, <7class(p,F) (1.14)

for V sufficiently nice [and finite range; if V is infinite range then (1.14) is
presumably true since both sides should be infinite but then the interesting factor
of 2 is not meaningful]. (1.14) is an open conjecture. (1.14) can be viewed as an
analog of the Weyl type result [7, 36, 48. 41] that the number of bound states
approaches classical phase space as fe|0. Motivated by this, one can ask if perhaps
the bound

cIass(p,F) (1.15)
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for all V with <JV a v-dependent constant. An analogous result holds for the bound
state problem [14, 35, 42, 47]. (1.15) cannot hold without some restriction. First if
v = 2, it is likely that σh(p, F)~(lnp)2 for p small so one should probably only
consider (1.15) for v^3. This is a restriction which is also necessary for the bound
state result. Moreover, due to problems with s-wave resonances (1.15) cannot hold
in dimension 3, 4, 5 or 6 if V is allowed to be negative (see the table in Appendix 1).
Thus, we only consider (1.15) for FΞ>0 (although it might hold if v^7 for all V).
Finally, (1.15) is false for asymmetric situations. For let V live in a cylinder of
radius R and height L with axis along the incident direction. Then crclass(p, V)
= τv_1R"~1 independently of L whereas, as we explain in Sect. 2, σQuantum surely
diverges as L-»oo. [This does not violate the possibility (1.14), since (1-14) is only
to hold for fixed F; no uniformity in V is claimed.] Thus, one must look either at
σ's averaged over initial angle or at symmetric F's. Moreover, one can arrange
asymmetric F's where σclass is anomalously small normally, one expects σclass to
be determined by the cross-section of supp(F), the support of F, but, if
F(x l 5x25 ...,xv) = /(x1) W(x2, ...,xv) with W constant in a large region and if the
initial momentum is in the (1,0, ...,0) direction, then the region where W is
constant will not contribute to classical scattering. In fact, we expect in this case
that limsupσ* — liminfσ f t is of the order of four times the v — 1 -volume of the

ft-+0 " ft-+0 "
region where W is constant. To be conservative, we conjecture that (1.15) holds in
v^3 for F^O, spherically symmetric, with geometrically determined cross-section.
Notice that for such F's (1.11) is essentially identical to the conjecture and that
dv = dv. In Sect. 5, we sketch a possible approach to proving this conjecture.

(3) Sharp E Bounds. Our bounds in Sects. 2-4 only hold for cross-sections
averaged over small energy intervals and we have been unable to get bounds on
the cross-section at fixed energy. Our attempts to do this have convinced us that in
taking the norm inside the integral, in going from (1.5) to (1.6), thereby cancelling
eitH, one has lost all hope of controlling sharp energy. It would be good to control
these cancellations.

(4) Small E Bounds. In Sect. 2, we prove that for each fixed F, α, b

for μ small. This is more or less saying that we have a bound at low energy
diverging as /c~3. In fact, this cannot be improved uniformly in all dimensions,
since an s- wave resonance in 4-dimensions leads to a σtot diverging as /c~ 3(ln/c)~ 2

(see Appendix 1). However, the correct worst case small k behavior is k~1 in v = 3
and k(v~ 7) for v ̂  5. Can this be obtained with the basic method of this paper? For
positive F's, the correct small fe behavior is for v^3 /c ( v"3 ) (see Appendix 1). Can
this be obtained with geometric methods? (For F^O and compact support, we
obtain such a bound in Appendix 4 with other methods.)

(5) Small R Bounds. Consider a potential F supported in a sphere of radius R
and let σ denote the cross-section averaged over a small initial energy range. Then
for c depending on v, and this energy range we obtain, in Sect. 2, that :

4) (1.16)
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and for V^Q

σ^c(Rv-i+Rv~2). (1.17)

When, we announced these results in [20], we conjectured that the Rv~2 could be
dropped in (1.17) and that the JR V ~ 4 in (1.16) should be ,RV~3. The first conjecture is
correct, i.e., using results in Appendix 4, for F^O

σ^cRv~l (1.17')

(see the discussion of problem 1 above). However, in v = 4, σ can behave as (In.R)"2

for a suitable class of potentials (see Appendix 1). Thus our conjecture in [20]
concerning (1.16) is wrong. However, the considerations in Appendix 1 suggest
that for arbitrary F, R <£ 1, and v ̂  5

σ^cJR ( 2 v~ 8 ). (1.160

Can this be proven? (1.16') is closely related to the /c { v~7 ) behavior conjectured in
the discussion of Problem 4.

(6) Atom-Ion Scattering. An induced polarization picture suggests that
Coulomb cross-sections with one neutral and one charged cluster will be finite if
the neutral system has no static dipole moment. We are unable to prove this. Can
one obtain explicit bounds in such a case?

It is a pleasure to thank J. M. Combes, P. Deift, E. Lieb, and W. Thirring, for
valuable comments. V. E. would like to thank the Institute for Advanced Study for
its hospitality and support under the Albert Einstein visiting professorship
endowed by the Federal Republic of Germany and for a travel grant provided by
Deutsche Forschungsgemeinschaft.

2. Basic Estimates in the Two-Body Case

We begin with an analysis of one-dimensional wave packets.

Lemma 2.1. Let h0=—^d2/dz2 on L2(— 00,00) and fix a function G in ̂  the
Schwartz space with

supp G C (— (5, δ).

Let Gv be defined by

Gv(p) = G(p-v)

and let Gv(z,t) = (e-MoGv)(z). Then:

\Gυ(z,t)\^Cmll + \z-vt\Tm (2.1)

if

z/tφ[_υ-δ>v + δ~] (2.1')

or

. (2.1")
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Moreover,

1'2 (2.2)

for all z, ?. In (2.1), Cm is a constant depending on m (and G) but not on v.

Proof. Clearly

I d
so, with p = -- :

i dz

H[exp(-iίi(p4-t;)2)G](z)|

= \[exp(-ith0-iυtp)G](z)\

= \G(z-υt9t)\

so it suffices to prove (2.1), (2.2) for u = 0. (2.1) under hypothesis (2.Γ) is then a
standard result of integration by parts (see Hormander [26] or Reed and Simon
[40]). (2.2) follows from the fact that GeL1 and e~ίth° is convolution with a
function in L°° with L^-norm bounded by C|ί|~1/2. For | f | r g l , all Schwartz space
seminorms of Gυ(z, ί) are uniformly bounded. Π

Now fix an input direction e which we suppose is (1,0, ...) and let

Given G, as in Lemma 2.1, let gv(x) = Gυ(xl).

Theorem 2.2. Let H0 = —\Δ. Under the above hypotheses, suppose that V obeys (i)
D(H) = D(H0); (ii) (l + |x|)1+εK is uniformly locally Ll for some ε>0. Then:

oo / oo \ l / 2

sup|i(S-l)0ΛII^ ί dt\ ί \W(z)\2\Gυ(z,t)\2dz) , (2.3)
Λ > 1 -oo V - o o /

where

W(z) = ίl\V(z,x2,...,xv)\2dx2...dxv-]112. (2.4)

Furthermore lim ||(S— l)gvhR\\ exists if the bound (2.3) is finite.
R-+ co

Proof. gvhR lies in L2, so, since (Ω~)* is a contraction:

||(S- l)gJιR\\ = ||(Ω-)*(ί2+ -Ω-)gvhR\\

g||(Ω+-Ω-)0ΛII (2 5)

g ί HFe-^ΛNί. (2.6)
- GO

(Actually equality holds in (2.5) since asymptotic completeness is known in this
case [40].) (2.6) holds because hypotheses (i), (ii) imply that (Ω+ - 1) and (Ω~ - 1)
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exist and when applied to nice vectors like gvhR, they can be obtained as integrals
of a derivative. Now, write

and use the elementary Gaussian wave packet calculation :

to obtain (2.3).
The contribution to the right-hand side of (2.3) is arbitrarily small for large

values of t or of (x2, . . ., xv), and lim [e~ltH°hR~](x) = 1 uniformly on any bounded
-R — * oo

region of ί- and (x2, ..., xv)-values. This implies the existence of the limit. Π

For the next result we use the norm

oo / « + ! \ l / 2

= Σ sup J |/(x)|2dx . (2.7)
m = 0 \n\^m \ n ]

Proposition 2.3. Fix G. Then for v^2δ the right-hand side of (2.3) is bounded by

(2.8)

Proof. Using (α-)-6)1/2^α1/2 + b l / 2, we need only separately control the region
where (2.1) holds and its complement. Let

oo 11/2

- oo J

The contribution from the region of z-values where (2.1) holds is bounded by:

oo oo

C J dtu(tv} = Cv~l J u(y)dy
— oo — oo

so a (2.8) type bound follows form

j u(y)dy^C\\\W\l (2.9)
— 00

But clearly:

1/2

from which (2.9) follows.
By (2.2) and the conditions for (2.1) to hold, the contribution from the region

where (2.1) fails is bounded by

/ (v + ό)t \ l / 2

D J dtir1 j W(z)2dz\ .
| ί |^l \ (v-δ)t /
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Since for |ί|^l

(v + δ)t

r1 J IW(z)\ 2 dz^2(25 + 1) sup
(v-δ)t \n\^[(v-ό)\

we obtain the required bound. Π

Remarks. In v-dimensions if |F(r)|^Cr~α at infinity, then the above argument
shows that (2.3) and so σtot is finite so long as α > f (v + 1) which is exactly the right
borderline for σtot < oo (see Appendix 2). However, Proposition 2.3 does not get the
correct borderline on a logarithmic level, for if

the above estimates require that y > 1. It is clear that this restriction is not just an
artifact of our method of estimating the right-hand side of (2.3). Once we bound

\\$dteitHVe-ίtH°g\\2 by ($\\eίtHVe-ίtH°g\\dt)2,

it is clear that a necessary condition for finiteness is WeL1 which requires y > 1. As
we see in Appendix 2, the correct borderline is y > \. Note with regard to this kind
of borderline that Combes [11] (using Besov space norms) also needs y>l ,
whereas Martin [37] (using Rollnik norms) obtains finiteness for y > \ if either the
norm is small or spherical symmetry holds.

Throwing logarithms to the wind, we state our main result as follows:

Theorem 2.4. Fix ε > 0 and let

v 1/2

Y[ (1 + |Xj |) 1 / 2 + ε J V(y)2dvy
i=2 |χ-y |^i

Then lim ||(S — l}ghR\\ exists for all functions g of the type considered and using
R —*• oo

(1.2) to define σtot we have for any y>0 and all v>3y:

2θ2\\V\\p (2.10)

for all coupling constants g. Here C depends only on y and ε.

Proof. The bound follows from Proposition 2.3 if we pick G so that G = 1 in (— y, y)
with say <5 = fy. Π

The bound (2.10) has a number of very nice features:

(1) As remarked already except for logs, it has the correct limits in terms of
falloff. Notice the asymmetry between the falloff required in directions parallel to
the beam direction and those perpendicular.

(2) It has the correct high energy behavior in all dimensions see Apendix 1
where we examine high energy by using the validity of the Born approximation
there.

(3) It has the correct small g behavior, where the Born approximation is
applicable.
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(4) It has the "correct" large g behavior in the sense that for any μ < 2, there are
potentials with \\V\\ F<oo for some ε so that the left side of (2.10) grows as gμ as
μ-»oo see Appendix 2.

The deficiencies of the bound (2.10) are the following:
(a) We do not know how to take y-»0 using only geometric methods. This is

the major defect.
(b) No statement has been made about small energy. As we shall see shortly,

one can easily say something about small energy but that something is very bad
except in dimension 4.

(c) If V has better falloff than borderline, a large g bound better than g2 is
possible. This is something we remedy in Sects. 3 and 4.

We close this section by noting that using only (2.10) and the scaling relation
Theorem A. 1.1, one can obtain information about small energy.

Theorem 2.5. // || V\\F< oo, then for λ ̂  1 :

bλ

j σ^(k,V)dk^Cλ-2 . (2.11)
aλ

Proof. By Theorem A. 1.1 :

bλ b

\σiM(
aλ

where Vλ(x) = λ~2V(λ~1x). But as /l-»0, the sup in the \\Vλ\\F norm comes from the
L2 norm at x = 0, so for λ ̂  1 :

Thus Theorem 2.4 yields (2.11). Π

Remark. The bound (2.11) suggest a divergence of σtot(/c, V) as k~3. As the table in
Appendix 1 shows this is not far off in 4 dimensions but is not good in other
dimensions. From our geometric point of view, the special nature of 4 dimensions
is not apparent.

3. Potentials of Compact Support

In the last section, we used the basic Cook method to bound σtot in this section,
we exploit the Kupsch and Sandhas [33] modification of Cook's method to obtain
bounds depending only on the size of the support of V but not on the strength of
the potential. We emphasis that our results are only mild improvements on those
Amrein-Pearson [4] obtained by incorporating the Kupsch and Sandhas method
into their frame. We also mention that while our results have the correct large
distance behavior, there is room for improvement at short distances : see the
discussion in the Introduction.
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Theorem 3.1. Fix a,b>0. Then for all R,

b

a

for all V supported in {x| |x|^JR} where Cv depends only on v, α, b.

Remarks. 1. Combining the methods of this and the previous section highly
singular potentials and hard cores can be added to the class of potentials
considered in Sect. 2, because the constant Cv is independent of V. The necessary
manipulations are justified if for a suitable smooth cutoff function j (as used in the
proof below) (\-jΨeD(H) for all ΨeD(HQ] and 7(1-j) leads to a finite ||| |||-norm
(2.7).

b

2. By scaling, for large λ (say, A^l), $σ(λke;V)dk is also bounded by
α

C v(jR v~ 1 +RV~4) (see Appendix 1). Thus these bounds unlike those of Sect. 2 do
not have v~2 falloff but are uniformly bounded for high energies. This is good
since there is no falloff for hard core potentials. If we tried to carry through the
energy dependence in our proof, we would find the loss of the υ~2 factor comes
from the appearance of the gradient of g rather than g in (3.2), below.

Proof. Let j be a C°° function of compact support which is one on the support of V.
Then

Ω± = s-limeίtH(l-j)e~itHo

t~+ + 00

since j(H0+ I)"1 is compact. Moreover,

H(l -j) - (1 -j)H0 = [if 0, (1 - j)] = - [H0, j] = $(Δj) + (FT) F.

Thus, as in Sect. 2:

Jσ(/ce,F)d/c^(jdί[|||^ (3,2)
α

where g is a function of x e with g(k) = 1 on (α, b). Let J be a function on CQ which
is 1 for |x| £J 1 and let j = J(x/JR). Let

so

By a simple calculation, |Wy|2 is dominated by JR V ~ 3 for R large and by K v ~ 4 for
small jR. In the same way, the (PJ)-term is dominated by JR'

Now suppose that F^O, so ||(#+ 1)~ 1/2(#0 + 1)1/2|| 5Ξ1. By a simple argument
using this bound and the compactness of (H+ 1)~1/2 — (#0 + 1)~1/2,

Ω± = s-lim eitH(H+ 1)" 1/2(H0 4-1)1/2^"^0

f —> + oo

- 5-lim eitH(H+1)~ 1/2(1 -7)(H0 +1)1/2*?-^.
ί-> -
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Now we can estimate

(H +IΓ1

and

\\(H+lΓll2r \ \ £ \ \ ( H + l Γ 1 / 2 ( H 0 + ί)1/2\\ ||(H0 + lΓ 1 / 2P.| |^|/2. (3.3)

Thus, only the Vj term in (3.2) remains and so :

Theorem 3.2. Fix α, b>0. Then for all R:

b

j σ(ke ;V}dk^ dv(Rv ~ 1 + Rv - 2) (3.4)
a

for all non-negative F's supported in {x| |x|^

Remark. If

for some α>0, then (3.3) holds with the final ]/2 replaced by (2/α)1/2 so that for the
class of such H's [equivalently F's with (1 -α)H0 4- F^M(α- 1)] an estimate like
(3.4) holds but with dv replaced by dvα

- 1. It is interesting to note that the "point
potentials" in v = 3 dimensions, i.e., sequences VR where σtot has a nonzero limit as
R-+Q have the property that for any ε>0, lim inf σ((l — ε)H0+ VR)= — oc.

j? ~^ o

4. Large Coupling Constant

In Sects. 2 and 3, we considered two "extreme" cases : in Sect. 2, general potentials
with σ t o t< oo finding σtot(gV)^cg2 and in Sect. 3, potentials with compact support
finding σtot(gV) g c. Here, we will "interpolate" to find gy bounds for 0 < y < 2 when
V has falloff intermediate between the two extremes. We suppose that for some

(4.1)

for some R0 and C. We will prove :

Theorem 4.1. Let (4.1) hold. Fix e. Then forv^l, and g/v sufficiently large, we have
that

v+ 1/2

j σtΰt(e,gV)dk^D(g/vY (4.2)
v- 1/2

for suitable D, where :

y = (v-l)/(α-l). (4.3)

Remark, In Appendix 2, we find lower bounds with the same large g behavior as
(4.2) for some spherically symmetric F's obeying (4.1). This shows that the power y
of (4.3) is the correct one.
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Proof. For fixed R^R0, let jR be J(x/R) as in the proof of Sect. 3. Since

H(i -JR) - (i -jR)H0 = UK, #0] + m -JR)
we get two terms in estimating σtot. The commutator term is bounded as in Sect. 3,
by CRV~ ί. The V(ί -JR) is bounded by a ||| - 1|| of the W associated to V(l -jR) as in
Sect. 2. The net result is

v+l/2

J σiot(ke,gV)dk^C(Rv-ί + v-2g2Rv + 1-2«).
v-l/2

Choosing R = (g/v)ll(*~1\ we obtain (4.2). Π

For exponentially decaying potentials we have the following result :

Theorem 4.2. Let V(x) obey

\V(x)\^Ce~^ for |x |£R 0, (4.4)

then for given e and any v^l, g/v^2
v+ 1/2

J σ,Dl(k~e,gV}dk^D\\n(glυ}-y-ί . (4.5)
v- 1/2

Proof. If the cutoff is made at R = (μ')~1ln(g/v), μ'<μ, the contribution from the
outside region is bounded: ((^/ι;)|||1/F|||)2^ const, whereas the inside region is
bounded by the right-hand side of (4.5). Π

5. Speculations on the Classical Limit

Fix a potential, V. Let σβ(p, ft) denote the total cross-section for scattering
involving the pair ( — \h2Δ + V\ —^h2Δ) at incident wave number k^ft^p. By
scaling the time which doesn't change the S-operator at all, this is the same as
scattering for the pair ( — \Δ+h~2V, —^Δ) at the same value of k. Thus, the
classical limit ft JO, is a limit where simultaneously we take the coupling constant
and the energy to infinity.

In terms of the quantities of the previous section g~h~2, t ^ft" 1, g/υ~h~l.
This makes it intuitively clear why the classical cross-section is generally infinite
unless the potential has compact support. Only in the latter case are our bounds
independent of g/v. [If one wishes one can also scale spatial variables and, using
Theorem A. 1.1, find that σQ(p,ft) is ftv~1 times the total cross-section for the pair
( — \Δ + V(hx\ —\Δ] at wave number k = p, i.e., we scale the size of the potential
outwards and then scale down the size of σ.]

Similarly, let dσQ/dΩ be the differential cross-section and let σcl(p), dσJdΩ be
the corresponding cross-sections for classical scattering. In this section, we want to
explain why we expect that normally one should have:

lim dσQ(p, K)/dΩ = dσcl(p)/dΩ (Ω Φ (0,0)) (5.1)

and

p, h) = 2σcl(p). (5.2)
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We will also sketch a possible proof relying on our basic formula (1.2) which we
repeat for easy reference:

\ \ ( S - l ) g \ \ 2 = $σtoi(k)\g(k)\2dk. (5.3)

We use the word "normally" above, since we know of situations where the classical
total cross-section is misbehaved under small changes in V: in the usual definition
of classical cross-section a piece of phase space with time delay but zero scattering
angle contributes nothing to σcl but for potentials of the type mentioned in Sect. 1,
[in the discussion of Problem (2)], there is a positive region of phase space with
such behavior so that σcl will be discontinuous under small changes in V. We
expect that the classical limit is anomalous in such situations.

The interesting feature of the above is the factor of 2 on the right side of (5.2).
Of course, it is only interesting in the case σcl < oo, so we suppose henceforth in our
discussion that V has compact support. Of course, (5.1), (5.2) appear inconsistent
with the basic formula

σtot = S(dσ/dΩ)dΩ. (5.4)

In fact, there is no inconsistency because no uniformity is claimed in (5.1). It is our
belief that there will be a contribution to σQ of the total magnitude asymptotically
exactly equal to σcl coming from small angles θ < h/\p\R (with R = range of V). This
is the celebrated shadow scattering: see Peierls [39] for a discussion of the physics.

Let us first note one case where one can explicitly see that (5.1), (5.2) both hold.
Consider a hard core potential of radius jR, i.e., V(x)=oo if |x|<.R and =0 if
|x|^R. The ft|0 limit is then precisely the same as the /c->oo limit where the total
cross-section is asymptotically twice the geometric cross-section (see [23] for v = 3
or Appendix 1 for general v while these arguments are not rigorous, it should be
easy to make them rigorous). As explained in Peierls [39], the extra scattering into
the shadow, i.e., the difference of σQ and σcl is all at small angles and it should be
possible to easily verify (5.1) in this case.

(5.3) is actually a perfect tool for understanding (and probably also proving)
(5.1), (5.2). Suppose that suppF={x| |x|<#} so that σcl = πR2 under normal
circumstances. We first claim that in the h[0 limit,

||(5- 1)0|| ί* ||(5-1)^||, (5.5)

where h = h(x9y) is one on x2 + y2 = ρ2^R and then drops to zero in a region of
size AR. AR may go slowly to zero as ft-»0. Before giving the proof let us make
some heuristic arguments. If g is centered in the region \z\<R at time ί = 0, then
Ve~lth°g will only be non-negligible (at least in the ft-»0 limit) for times
\t\ < 2R/vmίn = ί0, where vmίn is a minimal velocity in g (vmίn is h independent). Since
h has variations over a region of size AR, h will have momentum spread over a
region of size h/ΔR so the additional spreading of the step-region, As, during the
time ί0 will be As~htQ/AR = 2hR/AR. Thus As + AR = 0(h1/2} if AR~h1/2. This
shows that (5.5) should hold for suitable fa's shrinking to the characteristic function
of {ρ| |ρ|<jR}. Let us settle for proving the
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Lemma 5.1. Let V be bounded and supported in {x |x| < ,R}. Let H0(h) = — ^h2A and
let h be a fixed C^ function of ρ = (x,y,0) which is 1 in {ρ| |ρ|^,R}. Let gh be a
function of z of the form

with g fixed with support in [ymin, ι>max] C(0, oo). Then

lim J ||7exp(-wH0(ft))[(l-%J||ds = 0. (5.6)

Remarks. 1. As usual (5.6) implies (5.5).
2. We call the variable 5 in (5.6), since the "proper" time is ί = sh although it is (5.6)
that enters in estimating (S— 1). In looking at the two "time" intervals in the proof,
this physically correct variable should be remembered.

3. The proof, slightly extended, shows that the left-hand side of (5.6) is 0(hN)
for all N.

Proof. Let

e~ I l 2 ί s p 2 g ( p ) d p .

By the usual integration by parts argument (see [26, 40]), one finds that in the
region |z|< R, \s\^2R/hυmia:

which shows that the contribution of the region \s\^2R/hvm[n to (5.6) goes to zero.
Now let || || 2 denote the L2(d2ρ) norm. Then

so, since [7(1 -h)~] = 0, the contribution to (5.6) in |s| ̂  C/h is 0(h). Π

Remark. From the proof it is clear that Lemma 5.1 remains valid if the cutoff
function h is chosen depending on h and converging to a characteristic function if
h\\Δh\\2-*Q. If V is not central h should be chosen to converge to the characteristic
function of the shape of the obstacle as seen by the incident beam. Moreover |0(p)|2

can be chosen to approach a (5-distribution as fe-»0.
Now in ||(S—1)0||, first replace g by gh where h is very close to the

characteristic function of {ρ| |ρ| <R}. Next, let θ be the classical scattering angle as
a function of the impact parameter ρ so that θ(ρ) = 0 for ρ>R and suppose θ is
smooth and vanishes in ρ < R only on a closed set of measure 0. For given small g,
let h' be a smooth approximate of a characteristic function with support in
{ρl |0(ρ)|>ε}. Then, we can arrange that \\h — h\\2 is very small by taking ε small
and h very close to the characteristic function of a disc. Then, using

\\(S-l}g(h-h')\\^2\\h-h'\\2l\g(p)\2dp

we see that

\\g(p}\2σQ(p,h)dp
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will be very close to \\(S—l)gti\\. Now suppose, we can show that in the h[Q limit,
the quantum trajectory e~ltHgh' is essentially quasiclassical (with suitable hy-
potheses on 7, the method of either [25] or [51] can probably be used to prove
this); then (5.1) will follow. In addition, Sgh' and gh' will be orthogonal since, for
large times, e~ltH°ghr will move in the forward direction while e~ltH°(Sgh') will
move in non-forward directions. Thus

\\(S-l)gh'\\2*>\\Sgh'\\2 + \\gh'\\2

= 2\\gh'\\2

since the L2(dρ) norm oίh' is very near πR2 (or the area of the obstacle as seen from
the beam direction in the general case).

To summarize, the 2 in (5.2) comes from the fact that we count both the
scattered wave \\Sgh' \\2 and the shadow \\gti\\2 which has been removed in
|| (S— 1)#| 2. Put more forcefully: the formula (5.3) is a wave picture formula and
will not be correct in classical mechanics. (This point was emphasized to us
especially by E. Lieb.)

One further point about (5.3)/(5.4). If we try to use (5.3) to measure σtot, then in
the small ft-limit we only need a beam whose extent is that of the target see (5.5).
However, if we wanted to use (5.4), we would have to measure dσ/dΩ at angles
θ~h/pR. To distinguish scattered waves at such small angles from unscattered
waves, we have to be able to specify orthogonal momenta in the input beam to
much better than Ap~h/R. But that requires a beam width much wider than R,
i.e., the failure of

in classical mechanics, is forshadowed in the quasiclassical limit by differences in
the required size of the input beam required by the two distinct notions of σtot.

Finally, in terms of the above, we can explain why we asserted in the
Introduction that the correct hard core bound might be (1.12) rather than (1.12').
The 2 in (5.2) came from zero interference between Sgh' and gh'. But iΐSgh' and gh'
are antiparallel, then one has 11(5— l)gh'\\2 =4\\gh'\\2, i.e., a quantum term twice as
big as the quasiclassical term even when shadow scattering is included in the
quasiclassical term.

Let a plane wave e±ίkz, k = (2E)1/2, pass a potential well V(z) = V0>0 for

and V(z) = 0 otherwise. If K0 is small enough (thus, a is large) the reflected wave is
arbitrarily small and the transmitted wave has a phase shifted by π: — e±lkz for
z > a. The same applies for a wave packet g well concentrated around fe. Let F(x)
= V(z)χR(x2, . . ., xv), R>a, and take for hR a smooth approximation of χR. With V0

small and R large enough one can arrange that
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and

are all smaller than any error ε. Thus the constant in (1.12) cannot be smaller than
2 for kR large.

6. Two Cluster Multiparticle Scattering

It is for multiparticle scattering that our formalism really shows its full potential.
Here there is no definitive time independent formalism and we will use an analog
of our basic (1.2) to define σtot.

We follow the formalism of Sect. XL 5 of [40] : A channel α is a decomposition
of {1, . .., N} into clusters C15 ...,C fe and bound states η^ ...,^ f e for each cluster. j^Λ

is the family of functions of differences of the centers of masses of distinct clusters.
We define a map fΆ : Jfα-^Jf, the multiparticle Hubert space by

i.e., the wave function /Λφ has the individual clusters in the appropriate bound
states and the respective centers of mass in φ. H(a) — H — JD(α) where ID(a) is the sum
of all interactions between distinct clusters Cf and C;. Finally

and

We now define the total cross section, σβΛ, from a two duster channel α to any
channel β by :

and the total cross-section σα tot by :

*«ftot(fc)=Σ*/fc(fc) (6 2)
β

Notice that by the orthogonality of channels (Theorem XI.36(b) of [40]):

SfΛ-δta = (Ωjr(Ω:-Ω-) (6.3)

and also

Σ\\(Ω-)*u\\2^\\u\\2. (6.4)
β

[Equality will hold in (6.4) for ueJ^ac(H\ if asymptotic completeness holds.]
Combining (6Λ)-(6A) we see that

ί o βftot(fc)|§(fc)|2 dk ̂  \\(Ω; - Ω~)g\\ 2 . (6.5)
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By the usual Cook argument
oo 2

-oo 1

Letting /ι0(α) denote the kinetic energy of relative motion of the clusters in α and
|| - ||α the Jfα norm, we have proven that:

Theorem 6.1. In multiparticle systems:

2 < / ? -ftfcoί.) \2

α,tot = ̂  eff j

where

n ff(RαH[ίlWRα>OI2M (6.7)

The effective potential (6.7) is to be distinguished from the function

which often enters in other contexts see e.g., [32, 46, 44]. Cancellations are more
efficient in Feff, e.g., for C1 = proton and electron and C2 a single electron with the
usual Coulomb forces, Feff is 0(e~cR«} while 7eff(Rα) is 0(R~2) at infinity.

By the method of Sect. 2, we clearly have

Corollary 6.2. // each Vtj(r) for ij in distinct clusters obeys:

with α > \ (v — 1), then σtot < oo
and also

Corollary6.3. (v = 3). // each Vtj is Coulomb, i.e., Vij(r) = eiej\r\~l and if both
clusters are neutral (atom-atom scattering), then tftot<oo.

The point is that if both clusters are neutral, then F e f f (RJ~R~ 3 at infinity.
This is not changed if there are short range potentials in addition to Coulomb
potentials. However, if cluster 2 is charged but cluster 1 is neutral, then Veff(RΛ)
~cR~2 at infinity with

L < / C i d C 2

with ζ(ί) the vector from r£ to the center of mass of cluster 1. For example, when C2

has a single charged particle and Cx has two of opposite charge, then

where dis a function of the mass ratio of particles 1, 2 and the charges. In this case
c φ 0 for any direction R.

Thus our method is capable of accommodating atom-atom scattering but not
atom-ion scattering (by estimating Feff rather than Feff, we made an erroneous
claim about this in [20]). We expect σtot < oo for atom-ion scattering if the atom
has no static dipole moment as usual the limitation comes from replacing || J ... ||2

by ( i l l II) 2 .
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Appendix 1. Two-Body Scattering in v-Dimensions

ίn this appendix, we want to consider mostly formal aspects of the v dependence of
scattering for H~ — A + V on L2(RV). Among other things, we want to establish
(1.2) in cases where the kernel of S — 1 is sufficiently nice. We note that while we
deal with — ̂ Δ + V in the body of the paper, establishing (1.2) for — A + V,
establishes it also for — αzl + F by scaling time (and replacing V by α-1F). For
rigorous results on Lippman-Schwinger equations, etc. in v-dimensions see Thoe
[49] and Alsholm and Schmidt [3].

There is an eigenfunction transform based on functions φ(x, k) obeying

where G0 is the kernel of ( — A — k2 — io)~ ί. We will need the following formula for
large x [3] :

From this we read off the asymptotics of the Lippman-Schwinger function

where r = |x|->oc and k'^klxr'"1 fixed. In (A.I. 3), / is given by:

/(k^k)=-fc ( v-3 ) / 2π- ( v^^^

with T the usual T matrix defined by

The differential cross section is defined as usual from (A.I. 3) by:

~(k-fc')=|/(k',k)|2

so that by (A. 1.4)

As in the three-dimensional case [40, 27], one has the relation [49] :

,k')= -2πiT(k,k')δ(k2-(k')2)

for the kernel of the S-operator,
Now let g be a function of a single variable viewed as a function on jRv. If g is

the v-dimensional Fourier transform and g is the one-dimensional Fourier
transform, then

Thus, using (A.1.7):
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with e the direction of g. For (A. 1.8) to be true we require that g have support in
(0,oo). Thus, by (A. 1.6):

cβ', /cβ)|2](2π)v+ \2k)' 2 |g(fe)l 2fe v" l dk

= \σioi(k)\g(k)\2dk

as claimed in (1.2).
One can read the high energy behavior of σtot off of (A.1.4)/(A.1.6). In great

generality, the Born approximation is valid at large \k\ [52, 21], i.e.,

T(k,k')~V(k-kf) (A. 1.9)

for \k'\ large. Since \k — k'\2 = 2k2(l — cosθ)in polar coordinates with \k\ = \k'\ (A. 1.9)
tells us that

since T is only non-negligible in a (v — 1) dimensional region of radius ~ k~ 1. Thus,
by (A. 1.6), we see that

σtot^ck~2; /c->oo, any v (A.I. 10)

which is exactly the high energy behavior of our bound in the bulk of the paper.
The low energy behavior is more subtle and has a more interesting v-

dependence. Let us suppose that F^O and, since we are not worrying about
optimal conditions in this appendix, suppose that VeC^. Then the operator

k) = \V\1/2(-Δ-k2-iOΓ1\V\ίl2

is compact. Moreover, we have that

T(k,kf)=-(2πΓv<\V\1/2eik χ,(l-Q(k)Γ1\V\1/2eίk' χy. (A.I. 11)

Let us suppose v ̂  3, since for v = 1, 2, β(0) is not defined and the analysis is much
harder [31]. If \φσ(Q(ΰ)\ then T is bounded as k->0 and in that case

<jtot(k)-/c(v-3), (ίφσ(Q(ΰ)). (A.1.12)

The same applies for K^O because (l + Q(k)}~1 which then arises in (A.I. 11) is
always bounded.

Consider next the case where leσ(β(0)) and suppose that 1 is a simple
eigenvalue (we will remark on what happens if it is not later). The k dependence of
such eigenvalues has been extensively analyzed recently by Klaus and Simon [31],
who study behavior of eigenvalues at absorption into continua, and by Jensen
[29], who studies large time behavior. They find that if μ(0)=l is a simple
eigenvalue (c φ 0) :

μ(/c)-l+c/c 2 +... (v^5) (A.I. 13)

. (Case A;v = 4) (A.I. 14)

= l + ck+. . . (CaseA;v = 3). (A.I. 15)
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In addition, in v = 3,4, the behavior (A.I.13) can occur which we call Case B.
If η is the normalized vector with Q(Q)η = η, then (A.I.11) implies that

In all the cases we have labelled Case A, < |F | 1 / 2 , f/>φO and in the other cases
<| V\1/2, ηy — 0 (either case is possible in v ̂  5). It follows that Case A, which we call
the case of "s-wave dominance" is always the most singular case. Moreover [31],
since Case A is always a non-degenerate eigenvalue, there is no loss in our
assumption of simplicity. We summarize the situation in the table below:

Table A.I

v σtot in s-wave dominance case for E small

5 E-1

6 E~ 1 / 2

7 const

^8 0

Thus, the small E behavior we obtain with our geometric bounds cannot be
improved in general dimension by more than a logarithm. In dimension v φ 4, there
is considerable room for improvement.

Next, we want to look at scaling dependence:

Theorem A. 1.1. Let Vλ(x) = λ~2V(λ~1x). Then

where σtot(k, W) is the total cross section for — Δ-\-W at incident momentum ke (e
fixed).

Proof. While there are various methods available we will use our basic formula
(1.2). Let

be the unitary scale transformation. Then, with H0 = — A :

SO

by scaling time. Thus

t/Wi sw-i i t dΓ^CW-i]. (A.I.I?)
Notice next that

( U(λ) ~ ί g)~(k) = (2π) ~ 1 <2 \ λ + v/2g(λz) eίkz dz
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Thus, using (A.I.17) and (1.2):

Since g is arbitrary, the theorem is proven. Q
Now, with v = 3,4, fix V a potential with support in {x||x| <Ξ 1} with an s-wave

zero energy resonance and consider the sequence of potentials Vλ with /l->0 (when
v = 3, this is the "standard" point potential in the limit [22, 2, 50, 24]). Fix also
k φ 0. The small λ limit of σtot(/c, Vλ) can be read off the small k limit of σtot(fc V) in
Table A.I if v = 4,3 we have (replacing λ by R):

(InRΓ2 (v = 4)

(const) (v = 3).

The v = 4 case proves that again for general v, our Rv~4 result can only be
marginally improved. For vΦ4, there is considerable room for improvement.

Finally, we want to consider the eigenshift expansion (i.e., the relation between
σtot and the eigenvalues of the on-shell S-matrix), and use it to study the behavior
of the hard core scattering cross section. By (A.I.7), the on-shell S-matrix has an
integral kernel given by:

(S(E)-l)(Ω,Ω)=-πi(E)(v-2)/2T(Eί/2Ω,Eίl2Ω) (A.I.18)

so, by (A. 1.6):

dσ , _ _ ( v _ 1 }

dΩ

Thus, letting

with 5V_ x the area of the v— 1 dimensional sphere, we have

with || || 2 the Hubert-Schmidt norm. If S(E) has eigenvalues e2i&"(E) counting
multiple eigenvalues, a multiple number of times, we have that

If V is spherically symmetric, using the multiplicity of the spherical harmonics, we
find that
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Consider now hard core scattering when v ̂ 2. In the high energy limit (see [23,
Problem 109 for v = 3]) for small /, sin2 be alternates between being approximately
sin2LR and co$2kR such that we replace it by its average value 1/2. Moreover,
there is effectively a sharp cutoff at / ~ kR. Thus,

2 kR

f 1
~(v-2)! I

4
= (^ϊ)]

If τv is the volume of the unit ball in v-dimensions, we have that

so that the last calculation and (A.1.19c) lead to

σR(E) ^2τv_1R
v~1 (kR-*ao; hard core).

This is the expected geometric plus shadow scattering.
At intermediate energies (A.1.19c) tells us that σR(E)~k~(v~~1} f(kR) in agree-

ment with the scaling relation Theorem A. 1.1. Finally, to obtain the low energy
result, we note that when (v, /) φ (2,0),

tan [<5χk, JR)] =j,,(kR)/n,,(kR)

with /'= /+i(v — 3) so that for kR small

So for v =(= 2, the leading / = 0-term is

(5; = 0(/c,K)

and so by (A. 1.1 9c) (v^3):

4 (kR-+Q) (A.1.20)

a careful calculation shows that

which is the familiar 4π when v = 3 . Comparing (A.1.20) and (A.I. 12), we see that

hard and "soft" repulsive potentials have the same small fc behavior which is
reasonable. The only surprise is that the R2 behavior in v = 3 dimensions might
mislead one to think .Rv~ 1 was the small £ behavior as it is for large R. Note that
only if v = 3 does v — 1 = 2v — 4.
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Appendix 2. The Variable Phase Method and
Lower Bounds on σtot

In this appendix, our main goal is to prove

Theorem A.2.1. Let V be a central potential on R3 obeying (α>2):

Then, for any fixed energy, the total cross section σ ί o ί ( E , g ) for — Δ+gV obeys:

σtot(E,g}^cg2l(«-V (A.2.2)

for all sufficiently large g.

Remarks. 1. The same method proves an upper bound of the form Dg2l((*~l\ Of
course, unlike the method in the paper, this proof of the upper bound requires
central Vs.

2. The same method in v-dimensions yields a g(v-vκ*-ι\
3. The constants are uniform in k running over intervals, so averaged cross

sections have the same behavior.
We will also prove :

Theorem A.2.2. Let V be a central potential on R3 obeying (A.2.1) with
Then σtot(£) = oo for any g.

Remark. 1. In v-dimensions, the same argument works with α^ |(
2. The same arguments show that if (l+r)"α in (A.2.1) is replaced by

(l + r)"2[log(2 + r)]-y (or (1 + r)-(v-1)/2[log(2 + r)]~y in v dimensions), then σtot is
finite if 7 > \ and infinite if y ̂ .

Both theorems depend on controlling the asymptotics of the partial wave
phase shift δ^(g) which we will show behaves like — g/~(a~l) for ^ large, uniformly
in g. In the region where bf is small, we can replace sin2^ by δ2. If α ̂  2, the series
£(2/-fl)(52 will diverge and if α>2, the series c £ (2^+l)δ^(g)2 will give

the lower bound (A.2.2). Our control of <5, will depend on the "variable phase"
method developed by Calogero [10] and Babikov [6]. According to them

δ*(q} = lim d,(q9 r], (A.2.3)
(,\>J / f, VL/ ' / 5 \ /

r-+ oo

where dj(g,r) obeys (for simplicity, we work with k=l)

d's(r) = -gV(r)Dj(r)2 sin2(^(r) + d,(r)). (A.2.4)

The precise boundary conditions are unimportant, except that for F^O, they
imply [10, p. 15]

0^-d,(r)^δt(r). (A.2.5)

In (A.2.4), the functions D^ δ^ are connected with Bessel functions. For our
purposes, the following formulae [10, pp. 200, 201] are most useful:

X

δ,(x)= jdzD7 2(z), (A.2.6)
o

D/(x)=— f <iίcosh((2/+l)ί)Kn(2xsinhί), (A.2.7)
π n
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where K0 is the standard Bessel function of imaginary argument. We will also need
the formula [10, p. 200]:

Lemma A.2.3. (i) D2(x) is monotone decreasing in x for ί fixed and

£>ϊ(x) ^ Jim ί)2

e(x) = 1 . ( A.2.9)

(ii) For any fixed y, Dj((2f+ l)y) is increasing in { and

g(y)= \\mD2

((y(2{+l}) (A.I 10)
^-> oo

is finite if, and only if, y>^. g(y) is monotone decreasing, lim g(y)=ί and for y
y-*co

near -

(iii) im (2S+IΓ 1^2(i(2/+ 1)- 1/27+1) = oo . (A.2.12)

Proof, (i) Follows immediately from (A.2.8).
(ii) By a change of variables in (A.2.7) (ί = s/2x):

Dj((2t+l)y)= ~ ] d s c o s h ( s / 2 y ) X 0 g / . (A 2-13)

where f(u) = u~l sinhw. As / increases, MΞs/2y(2^+l) decreases, so

u

f(u) = u~l jcoshydy
o

decreases and thus K0(sf(ύ)) increases. By the monotone convergence theorem

g(y)=-]dscosh(s/2y)K0(s).
π Q

00 π
Since K0(s)^^~ ss~1/2 at infinity, and j X0(5)^s= — , all the results about g are

o 2
evident.

(iii) Since K0(s)^de~s(s+l}~1/2, (A.2.7) implies that for ( large

J dί{exp[(2/+l)(ί-sinhί)+ 1/27+1 sinhί]}[(2/+l)sinhί]~1/2.
I)- 1 / 3

In the region of integration (2*f+ l)~1 / 3<ί<2(2/+l)~1 / 3, (2/-hl)(ί-sinhί) is
bounded, and the factors from [(2/ + l)sinhί]~1/2 and (fdί) only go to zero as

an inverse power of / while exp((]/2/-hl)sinhί) blows up like
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Lemma A.2.4. Define x^ w^ by δ^(x^) = π/12 and ZλJ

supW+l)~1ΪJD|(x)dxl =
^ I JC^ j

Proof. By (A.2.6) and (ί) of the last lemma

203

= 2. Then

(A.2.14)

and thus, by (iii) of the last lemma

lim

It follows that for { large

and that

- 0 .

1)- 1/27+T (A.2.15)

= δ,(x,) - lim δχi(2<

so that

(A.2.16)

(A.2.17)

since either x^|(2/+ 1)+ J/2/+1 in which case (A.2.17) follows from (A.2.16) or

x^^(2/-h 1)+ 1/27TT in which case (A.2.17) follows from (A.2.10) and (A.2.11).
Next, note that

where

and

a= f

and α is only present if x^<|

1/2(2^+1)

1). Clearly since D is monotone,

by (A.2.15)and(A.2.17)and,

00

1/2

by (A.2.9) where w^ is determined by 0(1 )̂ = 2.
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Lemma A.2.5. // V obeys (A.2.1) with α> 1, then

— δ,(g)-ζ \-2(B+\)(gA)(l+t)~(Λ~l} (A.2.18)
12

for allέ^Q for a g-independent /0. Moreover, if /^/0 and g are such that —
^(π/6), then

*~1}. (A.2.19)

Proo/. By (A.2.3)-(A.2.5)

12 /

vv^

For { large, the integral from x^ to w^ is bounded by gV(xf) j D*(x)dx
xl

^gA(\ + S)-"2B(f + 1) and again for / large,

00 00

g J Kx)D|(x)dxg2g J V(x}^(gA)2(l+fΓ(x~l)

w w

This proves (A.2.18). To prove (A.2.19), we note that if —δ^(g)^π/6, then —d^(g,r)
^π/6 for all r, so sin2(^ + ̂ )^sin2(π/6) for all r with π/3^<5,^2π/3, mod2π.
Since ̂ δ'^l for r^vv^, we have contributions from enough intervals for

oo oo

J V(r) sin 2(δ^ + d^)dr^ (const) j F(r)Jr
vv/ w^

whence (A.2.19) follows. Π

Proof of Theorem A. 2. 2. By (A.2.18), —δ^^π/6 eventually so for /^/0, sin2^
^<52[(6/π)sin(π/6)]2 and thus by (A.2.19),

diverges. Π

Proof of Theorem A.2.1. As in the last proof, we pick J0(g) so that

σίoί(9)^92 Σ (2#0(9)
By (A.2.18), we must take ^0(gf)~ ί/g1 / ( α-1 ) for d small. Thus

^0te)]-2β + 4

4~2 s i ) / ( e~1 ) = <*'02 / ( e~1 ). D
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Appendix 3. Bounds on Cross Sections by the Birman-Krein Theory

The total cross-section averaged over initial angles is just the square of the Hubert-
Schmidt norm of a constant energy fiber (S(λ)— I) of S— 1 with S the S-operator.
But

= 2Re(Tr(l-S(A)))

with || || 1 = trace class norm. Thus, the celebrated results of Birman and Krein [8]
bounding ||S(T)— 1^ give control on the total cross-section. These are only
applicable for potentials with more-or-less r ~ v ~ ε falloff at infinity. Our goal in this
appendix is to show how to recover the correct large coupling constant behavior
for F's with \x\~a falloff (α>v) using the Birman-Krein theory. Other trace class
estimates have been obtained by Davies [15].

Given operators A, B with complete scattering, one can form the 5-operator
) = Ω~(A,B)*Ω + (A,B). Since S(A,B) commutes with B, it can be realized

naturally in terms of the integral decomposition B= J λldμ(λ) describing B. We

denote the fibers in this decomposition by S(A,B;λ):3Jfλ(B)-*J4?λ(B). The basic
result we will apply is that of Birman and Krein [8] combined with the invariance
principle :

Theorem A.3.1. // e~A — e~BεJί

1, then Ω±(A,B) exist and are complete,
S(A,B\λ}— 1 is trace class for almost every λ and

— *> i d -

We will also need the following result abstracted from [8]:

Proposition A.3.2. // both e~A — e~B and e~~B — e~Cε^1, then for almost all λ

Remark. S(A, C λ) and S(A, B λ) act on "different" spaces, namely the fibers of the
direct integral decomposition for C and B respectively. Of course, the fibers of
Ώ+(5, C) [or Ω~(B, C)] set up a natural isometry between the two spaces.

We will use these results and the method of Deift and Simon [16] to estimate
|| S(A, β A) — 1 1| 1 for A— — zl -f F, B= — Δ. For other results on this case by these
methods, see [13, 38, 43]. For simplicity, we suppose throughout that F^O. We
will exploit the space ^(L2) of Birman and Solomjak [9] :

Definition. Let Zlα, αeZv be the unit cube in #v, centered about α. ^(L2) is the set of
functions V on Rv with

J

Here we will prove :

Theorem A.3.3. // F^O, Ve^(L2} and S(λ) are the fibers of S(- Δ + V,- Δ\ then
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Theorem A.3.4. Under the hypotheses of Theorem A3 3, for any R ̂  1 :

with χR the characteristic function of {x \x\>R}.

Remarks. 1. The parameter λ here is the total energy to be compared with the
parameter k~λ112 used in the bulk of the paper. Thus, when there is a zero energy
resonance, \\S(λ)— 1 \\ 1 ~ λ ~ 1/2 at zero, a divergence consistent with these theorems.

2. If 0^7(x)<(l + |x|Γα with α>v, then \\VχR\\2]1^cRv-Ά so if V is replaced
by gV, by minimizing Rv~ ΐ + gRv~* we discover a gv~ 1/α~ 1 bound consistent with
our results in the bulk of the paper.

3. Dirichlet decoupling as used by Deift and Simon [16] yields the R"'1

behavior we find in Theorem A. 3.4. The alternative method to [16] introduced by
Combescure and Ginibre [13] yields an Rv behavior in that place and hence worse
coupling constant bounds.

We use the following notation : — ΔΓ is the Dirichlet Laplacian with vanishing
boundary conditions on Γ and H(Γ V) = — ΔΓ + V. We begin with the following
estimate which is essentially Corollary 25.10B of [47] :

Lemma A.3.5. Let fe^(L2\ F^O, ί^l/2, Γ arbitrary. Then fe~tH(Γ'^eJl and

||/β-' f l(Γ;%:gc|mi2;1. (A.3.1)

Proof. Suppose first that / has support in the unit cube centered at 0. Write

with

Since e-
sH(r'^^e~

sHo (where C<D means the integral kernel for D dominates
that for C), we see that A and B are Hubert-Schmidt with \\A\\2^c\\f\\2. Thus, by
translation co variance, for any feL2

cc:

(A.3.1) follows from summing over α. Π

Lemma A.3.6. Let F, W^Q. Let H= -ΔΓ+ F; H' = H+ W. Then

I K H - e " f l ' H i ^ c | | W | l 2 ; i - (A 3 2)
Proof.

o
1/2 1

g j \\We-(1-θ)H'\\1dθ+ j
0 1/2

so that (A.3.2) follows from (A.3.1). Π
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Proof of Theorem A.3. 3. By (A.3.2), with 7 = 0, Γ = 0 and ^changed to K

Theorem A.3.1 now concludes the proof. Π

Lemma A.3.7. Let Γ' lie in a unit cube. Then

with c only depending on t.

Proof. By translation invariance we may assume that Γ' lies in the unit cube at the
origin. Let A = e-tH(Γ»Γ" V)l2, B^e~tH(r>V}12. Then (l + x2)~M and B(l + x2Γv are
Hubert-Schmidt since e-

sH(G^^e~^o χhus? writing

we see that it suffices that (1 + x2)v(A - B) is Hubert-Schmidt. But B - A $ £0 - AQ

where AQ,B0 are the operators with Γ = 0, V=Q. By standard estimates [16, 47] :

(B0-A0)(x9y)^ce-^ + ̂ . D

Definition. For any set SClRv, let n(S) = the number of unit cubes, C, centered at
integral lattice points with CnSΦ0.

By an easy induction, Lemma A.3.7 immediately implies

Lemma A.3.8. For any F', Γ, F^

Proof of Theorem A3 A. Let H = - A + V, H0 - - Δ, H' = - AΓ + K H'0 - - ΔΓ with
Γ the sphere of radius R. Following [16], we take scattering (Jί0, H) in three steps :
(H0,H'0), (H'0,H

f), (H',H). By Proposition A.3.2 we need only prove a bound on
00

j \\S(A, C λ)- 1 1| ,e~λdλ for each pair (A, C). By Lemma A.3.8 and Theorem A.3.1,
o
the (HQ,HQ) and (H,Hf) integrals are bounded by cR"'1. Because of Dirichlet
decoupling the scattering for (H'0, H') is the same as that for (ίΓ0, H'Q + VχR) and
therefore, by Lemma A.3.6 and Theorem A.3.1, the corresponding weighted
integral of || 5-1^ is bounded by c||KχΛ | |2 ; 1. D

Appendix 4. Kato's Monotonicity Theorem and Scattering From Potentials with
Small Support

Our goal here is to prove:

Theorem A.4.1. Let v^3. Fix /c>0 and let σR(k) denote the total cross section for a
hard core potential of radius R. Let V be any (Lvl2 + ε) potential supported in
{x||x|<R} with O^K Then for all sufficiently small R,

σ(k,V)^σR(k). (A.4.1)
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Remarks. 1. By scaling, taking R to zero is the same as taking k to zero, i.e., for any
fixed R, (A.4.1) holds for k sufficiently small, or equivalently for each R, (A.4.1)
holds for kR sufficiently small.

2. The result is true if v = 2 where δ$ ~ [In (kR)'] ~1 but as we have not discussed
this case in Appendix 1, we state the result for v>3.

3. The proof does not extend to v = 1 dimension where dζ ~ — π/2 and σR(k) — 2
independently of jR and k (δ0 and δ{ differ by π/2). Presumably, the result is even
false in this case.

4. For central potentials, Kato's theorem used below can be replaced by well-
known results (see e.g., Calogero [10]), i.e., by (A.2.5).

5. As explained in Appendix 1, σR(k) = 0(R2v~ 4) for .R small.

Proof. In [30], Kato proves a monotonicity result, which shows that the total
phase shift Θ(V) can be defined for 7^0 so that (i) Θ(V)^0 for F^O;
(ii) Θ(V)^Θ(W) if F^Py^O; (iii) θ(λW)-+Q as λ[0. (iv) If ΘR is the sum of the
phase shifts of the hard core problem of radius R, —θ(λV)^—θR\ (v) the
individual eigenvalues θn of In S are monotone in the region where all θn stay away
from 0 and if 0<-θn<π, θ = Σθn.

n ^

From these facts, we conclude that if ΘR < π/2, all eigenvalues θn lie in (0, π/2)
and since sin2 Θ is monotone on (0, π/2), σ(/c, V)^σR(k). Thus the result follows
from the observation that ΘR<π/2 for small jR by the discussion in
Appendix 1. Π
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