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Abstract. We extend the analysis of absorbtion of eigenvalues for the two
body case to situations where absorbtion occurs at a two cluster threshold
in an JV-body system. The result depends on a Birman-Schwinger kernel
for such an AT-body system, an object which we apply in other ways. In parti-
cular, we control the number of discrete eigenvalues in the h -> 0 limit.

1. Introduction

This is the second paper in our series on the behavior of discrete eigenvalues,
e{λ% of Schrόdinger operators, — A + λV, as λ -» λ0, a value where e(λ) approaches
the continuous spectrum. In paper I, [9], we analyzed the general short range
two body case, and in a third paper [10] we will analyze certain special long
range potentials. In this paper, we want to say something about a certain class
of N-body systems.

We recall from [9] that the behavior is highly dependent on the underlying
dimension v, i.e. we considered — A + λV on L2((RV) with VeC™(Uv) and found
the behavior varying as v varies for example, v = 4 is characterized by the fact
that the ground state has a convergent expansion:

<#) = Σ anmk(λ - λ0r
2[ln(λ - λo)]-«pn2(λ - A,,)"1]* (1)

α = m + k -f ^n.

Consider now the three body system on L2(U2v):

H= -Δ+λV{x,y) (1.1)

V(x, y) = V12(x) + V23(ay + βx) + V13(yy + δx) (1.2)
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where α, β are parameters depending on the masses and α φ 0 Φ y. Suppose
V{. ^ 0 and in C^(RV). One can ask about the behavior of the ground state energy,
also, as λ[λ0, the point where it gets absorbed. In particular, one would like
to know if the behavior is the same as that for two body systems in dimension
v or dimension 2v. This will depend on the nature of the bottom of the continuous
spectrum.

By the HVZ theorem [13, Section XIII.5],

Σ = inf σess(H) = min(a 1 2 , a23, a13) (1.3)

witha {. = min σ(Hu)andH^ = — Δ + Vip with — Δ the2v-dimensional Laplacian.
If Σ = 0, we say that the bottom of the continuum is three cluster and if Σ < 0, we
say that it is two cluster. In addition, if only one a{. = Σ < 0, we say it is unique
two cluster. The intuition is quite simple: if the continuum is two cluster, the
threshold is basically due to a v-dimensional Laplacian, namely the relative
kinetic energy of the two clusters, so one expects the coupling constant behavior
to be that typical of a v-dimensional problem. If the continuum is three cluster,
one might well expect the behavior to be that characteristic of 2v-dimension.
Unfortunately, we have nothing to report about this interesting three cluster
case. Here we will concentrate on the case of unique two cluster thresholds in
three, and more generally JV-body, systems.

We want to make two remarks about when this kind of eigenvalue absorbtion
at two cluster thresholds takes place:

(1) If Vtj ^ 0, then for large λ, the Σ{λ) for - Δ + λV is negative. If all V.. < 0,
there will definitely be indefinitely many eigenvalues as λ -> oo. If we define

^ ^ x ) (1.4)

so that if V is continuous ar(λ)/λ -> af. as λ -> oo ([16]), and if

Σcl = min afp

so Σ(λ)/λ -» Σcl, then the threshold will be unique two cluster as λ -» co so long
as Σcl = afj for a unique i, j , say if

α c / 2 <α c

2

z

3 ,α c / 3 . (1.5)

Thus, for systems obeying (1.5) without Effimov effort, all but finitely many
eigenvalue absorbtions are of the type we consider.

(2) It can even happen that the ground state absorbtion is at a unique two
cluster threshold. For example, if — Δχ -f λ0Vί2(x) has a negative eigenvalue
but for all x

(which will happen for fixed λQ, α,y so long as v ^ 3 and V23,Vί3 have sufficiently
small Lv/2 norm), then absorbtion of the ground state will occur at a unique two
cluster threshold.

Our analysis of coupling constant thresholds in the two body case depended
on using a Birman-Schwinger kernel. In the unique two cluster case, we will
introduce a suitable Birman-Schwinger kernel in Sect. 2. Unlike the two body
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case, this kernel will not be compact. However, absorbtion at a threshold will
correspond to the kernel having eigenvalue 1 and the spectrum will be discrete
at 1. This will allow us to extend our analysis from [9] to the present situation
and we do this in Sect. 3.

The original purpose of the Birman-Schwinger kernel was to control the
number of bound states. In just the same way, our Birman-Sch winger kernel
gives us information on bound states, i.e. eigenvalues in (— oo, Σ) in iV-body
systems with two cluster thresholds. In the first place, it implies that the number
is finite (see Sect. 2). This result has already been obtained by many other methods,
see e.g. [24, 26, 15, 19]. Moreover (see Sect. 4) we get in some circumstances
fairly explicit bounds on the number of bound states. Here we feel that our results
considerably improve the very few existing bounds [6, 7,25]. Finally, our bounds
are good enough to control the classical limit for systems obeying (1.5). Explicitly,
we will show in Sect. 5 that when the F's lie in C£\ are negative, (1.5) holds and
v ^ 3 :

N(λ)/λv - c J (aί2 - V(x))vd2vx (1.6)
V(x)^a12

for an explicit c. Here N(λ) is the number of eigenvalues in ( — co,Σ(λ)). (1.6)
for the number of eigenvalues in ( — co,λai2) is standard Dirichlet-Neumann
bracketing [13, Sect. 8.15]. The difficulty which we solve with the methods of
this paper involve the interval (λaί2,Σ(λ)). These problems are discussed in
more detail at the beginning of Sect. 5.

2. A Birman-Schwinger Kernel

We consider a general N-body system of v-dimensional particles so H is an operator

o n L ^ I T ^ - 1 * )

H=H0 + V, (2.1)

where Ho is the operator resulting from removing the center of mass from
N

X -(2m.)-1zl.and

Throughout this paper we suppose

F . ^ 0 (2.3)

and normally we suppose

(2.3) considerably simplifies the arguments since the Birman-Schwinger kernel
is self-adjoint when (2.3) holds but most results should hold without (2.3). (2.4)
is similarly made for technical convenience. Occasionally, we will indicate which
arguments extend to cases where (2.4) fails and what hypotheses are then necessary.
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We follow the notation of [13] generally. Specifically, let D = {C 1 ?... , C j
be a partition of {1,... ,JV} and let £(resρ. ]Γ ) denote the sum over all pairs

iDj ~ ίβj

with ίj in the same (resp. different) cluster of D. We define

V —YV ' I = Y V

#D = #0 + ^D = # ~ lΏ

ΣD = Mσ{HD).

For each D, there is a natural decomposition of e ^ = L2(R v ( J V"1 )) as J f ^ ® JfD

with 2tfΏ = functions of rtj with iDj and JfD = functions if Rq - ^ where Rq =
Σ m/ ri/ Σ mi ^s ^ e c e n t e r of mass of Cq. Under this decomposition.

ιeCg ieCq

The hypothesis of unique two cluster threshold is the existence of a D with

# (D) = k φ 1 and

ΣD<ΣD. (2.5)

for all DφD with # (D;) φ 1. Of necessity, (2.5) can only hold if # (D) = 2 (since

Σ D i ^ Σ β 2 if D 2 is a refinement of D 1 5 written Dί < D2) and if (2.5) holds, then

hD must have an eigenvalue at the bottom of its spectrum (since inf σess(/ιD) =

min(ΣD,\D <D\Dφ D') by the HVZ theorem) and this eigenvalue will be simple.

Thus, we pick once and for all a vector ηe^D with || η || = 1 and

We let p be the projection in jfD onto η and P = p ® 1, the projection in
We define q = 1 - p, Q = 1 - P. It follows that

D [ Σ ' , c o ) . (2.7)

with

Γ > Σ = minZ D = 2:i) (2.8)
D

since ΓD is a simple eigenvalue of /ιD.
We define the Birman-Schwinger kernel by:

2 ( H D - £ ) - 1 | / / ) | 1 / 2 (2.9)

for E < Σ. We begin with the elementary:

Proposition 2.1. Let E<Σ. Then Eeσ{HD + μID) if and only if μ~1 Eσ(K(E)).
This result remains true if σ is replaced by σe s s in both places.

Proof Write HD + μID-E = {HD - £)(1 + μ(HD - E)~ ΊD) and conclude that
(since Eφσ{HD)\Eeσ{HD + μID) if and only if μ'1eσ{ - (HD - E)~ΊD) =
σ((HD — E)~1\lD\) = σ(K(E)). The last equality follows from the well-known
fact (see eg. [4]) that σ(AB)\{0} = σ(BA)\{0} for any bounded A, B.

If Eeσess(HD + μ0ID\ then since σess(HD + μID) is an interval [I"μ,oo) with
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Σμ decreasing in μ, Eeσess(HD + μID) for all μ ^ μ0 so [0, μ~x] cz σ(K(E)) which
implies that μ~ 1eσess(K(E)).

If Eφσess(HD + μ0ID) then, we claim that for some δ,Eφσ(HD + μID) for
μe(μ0- δ, μ0 + <5)\{μ0}. This is obvious if Eφσ(HD + μ0ID) and if Eeσdisc(HD +
μo/D), Eφσdisc(HD + μID) for μ near μ0 since discrete eigenvalues of HD + μID

are strictly monotone in μ. It follows that μ^1 is either not in σ(K(E)) or is an
isolated point of σ(K(E)). In the latter case, we must show that the multiplicity
of μ" 1 as an eigenvalue of K(E) is finite. But if K(E)φ = μ~ιφ, then
(if D + μID -E)φ = 0 with

φ = (HD-E)-1\lD\1'2φ

since

(ifD + μID -E)φ = \ID| ^ ( 1 - μK(E))ψ.

Since (HD - Eyι\lD\1'2 \{φ\K{E)φ = μ~V} has no kernel, this shows that the
multiplicity of μ~1 is at most the multiplicity of E as an eigenvalue of HD + μfD.

•
Notice, at the end of the proof, that if (HD + μof^ — E)φ = 0, then

Φ = \iD\ll2Φ

obeys K(E)φ = μ~ ιφ. Since | ID \1/2 is non-vanishing on such φ (since Ker (HD —E) =
{0}), we have that

Proposition 2.2. Let E < Σ. Let Eeσdisc(HD + μ0ID). Then the multiplicity of E
as an eigenvalue of HD + μ0ID is exactly the multiplicity of μ~ 1 as an eigenvalue
ofK(E).

Remark. In the first step of the proof of Proposition 2.1, we used the fact that
HD and HD + μi D have the same domain to be sure that (HD + μi D — z)~ί(HD — z)
is bounded. This is actually critical; if Ho is the free Dirac Hamiltonian, and if
V = ±^/3\r\~\ then Ho + V is essentially self-adjoint, 0^σ(ifo + V) but le
σiH-'V).

In the proof of Proposition 2.1, we noted that σess(HD + μiD) = [Σ , oo) with
Σμ monotone in μ. It follows that:

Proposition 2.3. Lei E < Σ. Then σξtss(K(E))=[0,Λ{E)'] where Λ(E) =
{\ Ί}

x
The applicability of these ideas to threshold phenomena depends on the fact

that K(E) has a norm limit as E ΐ Σ. To see this it is useful to define:

with P, Q the projections introduced before (2.7). On account of (2.7), (2.8) we
have:

Proposition 2.4. KQ(E) has an analytic continuation to C\( — oo, Σ'). In parti-
cular, on account o/(2.8), KQ(E) has a norm limit as E\ Σ.
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As a preliminary to analyzing KP(E\ we note the following (the case m = 0
is well known; [21, Thm. 4.1]):

Lemma 2.5. Let M> = L2(Un+m) = L2(Un) ® L2(IRm) αwd denote α poίwί m Rπ x (Rm

as (x, y). Let q= - Nx, let T be a fixed affine map from Um to Un and let ηεL2(Mm)
be a fixed unit vector. Let p — projection onto η and P — I® p. Then for each
re[2, oo), and fgeU(Un\ the operator f(q)Pg{x + T(y)) = A(fig) is in the trace
ideal J\{J^) and

Proof. For r = oo, A is bounded and its operator norm is clearly bounded by

II / IIoo II9 Hoc F ° r r = 2, the operator is easily seen to have the L2 integral kernel:

'2f{x - x')g{x' + T(y'))η(y)η(y\

with L2 norm equal to (2π)~n/2 \\ f || 2 [| g \\ 2. The result now follows by interpolation
(e.g. [21, Theorem 2.9.]). •

Proposition 2.6. Let v ̂  3 and let r > v/2. TTien /or a// £ < Σ", Kp(E) is in the
trace ideal Jr and as £ Ϊ Γ, Kp(E) converges to an operator KP(Σ) in J' -norm.

Proof By Holder's inequality, it suffices to prove boundedness and continuity

in
2r of {HD-E)-1/2P\ID\1/2. Since | / D | 1 / 2 Σ (Vij)ί/2 i s multiplication

\~iDj /

by a function bounded by 1, we need only prove the required fact for
(HD-E)-1/2P\Vij

 1 / 2 with ~iDj. But since (HD- Ey1/2P\ Vtj\
112 =(tD + (Σ -

E))1I2P\ Vij(ri - r) 1 / 2 and r. - r. = R + p with R = Rc- RC2 and p an "internal
coordinate", the operator in question is exactly of the form to be controlled by
Lemma 2.5.

For later purposes it is useful to relate the non-zero eigenvalues of Kp to
those associated to the Birman-Schwinger kernel for a two-body problem invol-
ving the potential

V«f(R)=ilD(R,p)\η(p)\2dP (2.10)

where p stands for the internal coordinates and R is the difference of the centers
of mass. Thus

PIDP = P®Veί{ (2.10')

The tilde is included to distinguish it from the effective potential relevant
to scattering theory [12, 5]:

P / 2 P = P(x)Fe

2

f f; F e f f ^ 0 . (2.11)

Proposition 2.7. The non-zero eigenvalues (counting multiplicity) of Kp(Σ) are

identical to the non-zero eigenvalues of

\y 11/2/. \-l\y 11/2

as an operator on 3t?D.
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Proof. Since the non-zero eigenvalues (counting multiplicity) of A*A and AA*
are the same [4] KP{Σ) has the same eigenvalue as —(tD)~1/2PIDP(tD)~1/2 =
(ίp)~ 1 / 2 PI F e f f I ( ί p ) " 1 / 2 = ί"1 / 21 F e f f I ί"1/2 (g) P. Using the A*A result again, we
have completed the proof. •

We summarize the last few results and extend them in

Theorem 2.8. K(E) has a norm limit K(Σ) as £ ΐ Σ and moreover:

(i) σeJK(Σ))=[09Λ(Σ)-]9

where A(Σ) = sup {λ \ σess(HD + λ~ ΊD)f) ( - oo, Σ) + 0 } < 1
λ

(ii) K(E)^K(Σ)

for all E<Σ.

Proof Propositions 2.4 and 2.7 imply the existence of the norm limit. The identi-
fication of σess(K(Σ)) follows from Proposition 2.3 and Lemma 2.9 below. That
A(Σ) < 1 follows from the fact that Σ is unique two cluster. Finally (ii) is obvious
since

for E^Σ.M

Lemma 2.9. Let 0 ̂  An, σess(v4n) = [0, aJ and suppose An-+ A in norm. Then
a = lim an exists and σess(A) = [0, a].

Proof Let a (resp. a) be lim an (resp. lim an). Let λ < lim an. If λφσ(A), then λφσ(An)
for all large n, so λ > an for all large n violating the assumption. Thus [0, a] cz σ(A)
and so [0, a] cz σess(v4). Now let λ > a. Pick δ > 0 so that λ — δ > a. Pick n so large
that || A - A J ^ (5/3 and that λ - 2δβ > an. Since \λ - (2δβ\ λ + (2(5/3) ]f)
σess(,4π) = 0 , we can find F finite rank so that [λ- (2(5/3), λ + (2δ/3)]f| σ(Aπ + F) =
0. Thus [Λ - ((5/3), A + 05/3)]f) σ(A + F) = 0 so ^ σ e s s W ) , i.e. σess(^) [0, ά]. •

One immediate consequence of the machinery of this section is the following:

Theorem 2.9. Let H be the Hamiltonian of an N-body system with potentials
obeying (2.3) and (2.4). Let Σ, the infimum of the essential spectrum be unique two
cluster. Then dim ran E{_^ Σ)(H) < oo (i.e. there are finitely many "bound states").

Proof. d imranE ( _ o o ^ ) ( i/)= lim dimranE(_oo>2;_(1/π))(JFir)

- Jim # { ^ > 1, * « ( * ( * - ί ) ) } (212)
^ # {λ\λ> 1, λeσ(K(Σ))} < oo .

In (2.12) we use the standard Birman [1]-Schwinger [14] argument; in the next
step, we use K(E) g K(Σ) and, in the last step that [1, oo)f) σess(K(Σ)) = 0. •

We close this section with some remarks about extensions to more general
F's. With no change at all, we can allow K^.GLV/2([RV). Moreover, by a little more



160 M. Klaus and B. Simon

argument, we can accommodate F's which aren't negative and even allow cancella-
tions in various V{. in ID :

Theorem 2.10. Let Σ,H be as in Theorem 2.9 but replace (2.3), {2A)with:

(i) The V{. are H0-compact

(ii) VeΠeϋl2m

(iii) Ve

2

{ίeL^2(Uvy

Then dim ran E{ _ ̂  Σ)(H) < GO .

Proof. Let K(E) = (HD - E)1/2ID(HD - E)~1/2. As above, we need only prove
that K(E) has a norm limit as E ΐ Σ since then σess(K(Σ))f] [1, oo) = 0 . Introduce
four operators Kpp,KQQ, KPQ,KQP by

KQQ trivially has a norm limit. By (ii), (E = E — Σ)

has a norm limit. Finally, to show that KPQ has a norm limit we note that
Q(HD— E)~1/2 has a norm limit and that

has a norm limit since

CC* = (tD - E)

and we have (iii). •

Remarks. 1. For reasonable potentials, (iii) is weaker than (ii).

2. The above result is essentially equivalent to that in [19].

3. Coupling Constant Thresholds

In this section, we want to explain how the machinery of Sect. 2 allows one to
analyze the coupling constant behavior of eigenvalues in a situation where they
are absorbed into unique two-cluster continua. We describe only the case v = 3.
One can extend to general v ^ 3 situations by similar methods (although since
the Birman-Schwinger kernel is no longer Hubert-Schmidt, the arguments
are slightly more involved): the relevant object is the analyticity of the integral
kernel of (tD — α 2 ) " 1 where α = 0 so the behavior will be v-dependent in precisely
the way we found in [9]. It should be possible to analyze the case v = 1,2 as we
did in [9] but we have not worked out the details.

For simplicity, we consider first the family HD -f λID with λ varied and
then Ho + λV. Obviously, one can consider other variable couplings or even

ίN\
eigenvalues as functions of the I I coupling constants; the situation will be

virtually identical to the HD + λID case.

Lemma 3.1. Let v = 3 and let (2.3), (2.4) hold. Then K(E) defined initially for
E < Σ has an operator valued analytic continuation in the variable α =yjΣ — E
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around cc — O. Moreover:

fc(α) ΞΞ K(Σ - a2) = K(Σ) + Aμ + Λ2a
2 + 0(α3) (3.1)

with A1 rank 1 and A2 strictly negative on Ran(y41)
iP)L2(Supp(/I>)).

Proof. As already noted, KQ is analytic in E near E = Σ and thus certainly in
α. Moreover, KQ contributes only to A2 and not to Aί in (3.1). Its contribution
t 4 itθ/42is

A2.a= -VDI^QWD-Σ)-2^1'2. (3.2)

Kp has an explicit integral kernel in terms of (R, ζ) with R = intercluster coordi-
nates and ζ = intracluster coordinates:

where for notation simplicity we have supposed the masses are such that tD= — ΔR.
Since the V^eC™ and η has exponential fall off ([13, Sect. XIII.ll])

for some A > 0, so using Sobolev's inequality, (3.3) is square integrable for all
complex α with |α | < A. Thus Kp(a) has a Hubert-Schmidt valued analytic conti-
nuation. A1 is just the rank 1 one operator:

1(7,.)y (3.4)

with y = η\lD\1/2- Finally the contribution, A2P of Kp to A2 is strictly condi-
tionally negative in the sense that

and if {φ,A2PΦ) = 0 = {Φ,Alpφ)9 then p\lD\ίi2φ = 0. Since (φ,A2Qφ) = 0
implies that Q\lD\1/2Φ = 09 we see that if \lD\1/2φ φ 0, then either (φ,Axφ)φ0
or (φ,A2φ)<0 as claimed. •

Theorem 3.2. Suppose that HD + ̂ Q/^ ftfls α unique two cluster Σ = ΣD and that
for λ > λ0, there is an eigenvalue e(λ) with e(λ)]Σ as λ[λQ. Then, either:

(a) e(λ)= Σφ-λoT'' a2Φ°>

or

converging if λ — λQ is small Moreover, at most one eigenvalue is in Case (a) and
the ground state is always in Case (a).

Proof Given the lemma and the fact that the vector γ is positive, this follows

as in [9]. •

Important Remark. We do not claim that in Case (b), e(λ) is not analytic in λ — λ0,
i.e. that some b2k+1φ 0. Indeed, it can happen for reasons of symmetry, that for
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all λ > λ0, the eigenvector φ(λ) with eigenvalue e(λ) has Pψ(λ) = 0. In this case,
e(λ) = 0(λ — λ0) so we are in Case (b), but e(λ) is analytic in λ! However, in Case (b),
if e(λ) is analytic, then e(λ) is an eigenvalue for λ<λ0 imbedded in the continuous
spectrum [Σ, GO ). Moreover, we conjecture that this can only happen in the case
given above, i.e., when P\j/(λ) = 0 for λ > λ0.

We describe the situation involving absorbtion when all coupling constants
are varied in a sequence of remarks.

(1) Since both eigenvalues and the continuum are decreasing functions of
A, it can happen that as λ is increased, an eigenvalue gets absorbed because Σ "over-
takes" it. One can still describe the behavior with a Birman-Schwinger type
analysis.

(2) Consider the two parameter family

For β = λ — λ0, we suppose H has a unique two cluster threshold with breakup
D. This will remain true for β, λ both near λ0 but perhaps unequal. Then, the
bottom of the essential spectrum, Σ(β\ and corresponding eigenvectors η(β)
and projection P(β) depend on β but in an analytic way.

(3) The natural Birman-Schwinger object is

K(E,β) = \lD\^(H0 + βVD- E)-'\lDγi2

defined initially if E < Σ(β). The operator

k(a,β)=K(Σ(β)-*2,β),

has a continuation into a neighborhood of β = λ0, α = 0.
(4) If an eigenvalue is absorbed at β = λ = λ0, then fc(0, λ0) has a discrete

eigenvalue μo = λ~ί. Suppose this eigenvalue is simple. Then for a near zero,
and β near λ0, fe(α, β) has a unique eigenvalue, μ(α, /?) near μ0 and μ is analytic.
Clearly for λ near /l0, e(λ) is given by

e(λ) = Σ(λ)-a(λ)2 (3.5)

where α(A) solves

μ(a(λlλ) = λ-K (3.6)

(5) In any specific case, one can solve (3.6) but the possibilities of the general
solution are much more varied than in the situation of Theorem 3.2. For in terms
oϊy = λ~1-λ~\ (3.6) has the form

GO

Σ bn(y)an = y
n=0

but bo(y) may be non-zero so y — bo(y) might be 0(ym).
(6) Even if a single eigenvalue is absorbed at λ = λo,μo can be a degenerate

eigenvalue of K{0, λ0). This can be seen by looking at explicit examples of the
form — Δ1 — A2 ~ J)(F1(x1) + V2(x2)). If μ" 1 is degenerate, the μ entering in (3.6)
is now only an algebraic function of α, λ with all the possibilities of multivariable
algebraic singularities.
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To summarize: In principle, one can analyze the case H0 + λV. In general,
the possibilities are very varied but in the "generic" situation, things will behave
as in the HD + λID case.

4. Bounds on the Number of Discrete Eigenvalues

The methods of this paper provide many ways to obtain fairly explicit bounds
on the number, N(H\ of discrete eigenvalues of a many body H (counting multi-
plicity). Here we give one such bound to illustrate these potentialities.

Theorem 4.1. Let H have a unique two cluster threshold with clustering D. Suppose
that Σ is the lowest point ofσ(hD)\{Σ] (so Σ' obeys 2.7) and that

Then, with Feff given by (2.10):

N(tD + (l-βy%f). (4.1)

Remark. Thus N(H) is dominated by a two-body N for which there are many
explicit bounds; see [17].

Proof. Write K = Kp + KQ as in Sect. 2. Clearly:

WK^w^wijjr-Σr^β.
Thus

N(H) =#{λ\λ>l,λzn e.v. of K(Σ)}

g # {λ\λ > 1 - β, λ an e.v. of KP(Σ)} (4.2)

= # μ |A > 1 - β, λ an e.v. of | F e f f \^2(tp)-11 F e f f \^2} (4.3)

= N(tD + (l-β)~1Veίf) (4.4)

In (4.4), we use the Birman-Schwinger principle; in (4.3), we use Proposition
2.7; and, in (4.2), we use the trivial inequality

μn{A + B)^\\A\\+μn(B)

on singular values of positive operators. •

5. The Classical ( = Large Coupling) Limit

In this section, we want to discuss the small μ behavior of the number of bounded
states, N(H\ for H = μH0 + V or equivalently for Ho + μ~ 1 F. Thus, this limit
can be thought of alternatively as the large coupling or as the classical (h [ 0) limit.
For the two body case the result is well-known (see [2,11, 23, 3] for original work
or [13, 22] for further discussion). Here we consider the three-body and then
N-body cases in situations where classically the bottom of the continuum is
unique two cluster.

Henceforth, we let N(μ) denote the number of discrete eigenvalues of μHQ + V.
Then, we will prove that



164 M. Klaus and B. Simon

Theorem 5.1. Let v ̂  3. Let Ho= -A on L2(U2v) and let V be given by (1.2)
with Vtj obeying (2.3), (2.4). Suppose that (1.5) holds. Then

τ2v(2πyv f [aί2-V(x,y)Jdvxdvy (5.1)

where τ 2 v is the volume of the unit sphere in U2v.
Before turning to the proof of this result, we make a few remarks. First, given

(1.5), (2.3), and (2.4), the assumed form of Ho is no restriction. We can always
change variables so that Ho has the required form. More generally, in terms of
the original masses, we let

H{P19P2,P3,x19x2,x3)= Σpϊ/2mj+ΣViMi-χj)'
i = 1 i < j

and N(μ\ the number of discrete eigenvalues of H(μ) = μH0 + V. Then (5.1) holds
with the right side replaced by:

(2πyv$dvPί,...,d
vx3δ(ΣPi)δ{Σmixi/Σmί)θ{a12 - H(P9x))

with θ(y) = 1 (resp. 0) for y > 0 (resp. y < 0).
Secondly, we note that while the two-body result extends easily given the

right bounds to non-smooth F's, the present results depend heavily on bounded-
ness of the V.j. For example, if m1 = GO and V23 = 0, F 1 3 bounded and Vί2(x) ~
[xl'1 for x small, Vί2 of compact support and Vί2C™ away from x = 0, then
N(μ) will only grow as μ~v/2. For, in this case, the eigenvalues of H(μ) are sums
of eigenvalues of Hί2(μ) and Hί3(μ). For large μ, the only ones below the ground
state of H12 are sums of eigenvalues of H13 with the ground state of Hί2. Thus
for unbounded Vij9 the growth of N(μ) is a very subtle question on which we
have little information.

Write

Nι(μ) + N2{μ) (5.2)

with N1 the number of eigenvalues in ( - GO, Σ C / ] and N2 the number in [Σcl,Σ)
where Σcl = aί2 is the classical continuum. Notice that

{(x,y)\V{x,y)<Σcl}

is a bounded set, since V(x,y) < Σcl can only happen if two of the x. — x. are
smaller than R, the maximum range of the Vtj. Given this, one easily uses Dirichlet-
Neumann bracketing (see e.g. [11, 13, 20]) to prove that:

lim μ'iV^μ) - right side of (5.1). (5.3)

Thus, we are reduced to proving

limμviV2(μ) = 0. (5.4)

Let Kμ(E) be the Birman-Schwinger kernel of Sect. 2 for H(μ). Below, we
will prove that for any ε > 0:

μ v[ # {e.v. of [Kμ(Σμ) - Kμ(ΣJ] Z ε} ] -* 0 (5.5)
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asμ -• 0. We first note:

Lemma 5.2. (5.5) implies (5.4) and hence the theorem.

Proof. Let Fε(x, y)= V(x9 y) + ε F 2 3 + ε F 1 3 . Then, for ε small enough, Σε

cl =
lim Fε(x, y) = Σ , = α 1 ^. It follows that (5.3) continues to hold for V replaced

W + bl-oo

by Vε in the integral on the right and with Nλ(μ) replaced by N\(μ), the number
of eigenvalues for H(μ) + εID in ( — oo, Σcl~]. Thus

lim \im{μv[N\(μ) - iV^μ)]} = 0. (5.6)
εlO μ[0

Since

Λ^(μ) = # of e.v. of Kμ(Σcl) > (1 + ε)~ 1

and

JV2(μ) - # (of e.v. of Kμ(Σμ) > 1) - # (of e.v. of Kμ(Σd) > 1),

we see, using (5.6), that

limμviV2(μ) g lim Urn μv[ # (e.v. of K (Σ ) > 1) - # (of e.v. of K ( Z J ̂  (1 + ε) " x ]
μ-̂ 0 ε|0μ->0

since, for A,B^0,

( # ofe.v.ofΛ + β > l ) - ( # of e.v. of ̂ > l - < 5 ) ^ ( # of e.v. o f 5 > 5 )

(5.5) implies (5.4). •

Lemma 5.3. (5.5) holds.

Proof. Let pμ be the projection onto those eigenvalues of hD = — μzlχ + ^ i 2 ( χ )
less than (l/2)2:cI. Let P μ = pμ <g> 1, β μ = 1 - P μ . Then

[Kμ(Σμ)-Kμ(Σcl)] = ap + aQ

where

Now, clearly

II α

0 II ̂  II ̂  II » ^ μ - ΣclW/2)Σcl - Σμ)-2 -+ 0

as μ -> 0 since limZ = Σ c / . Thus, for μ large, || OLQ || < ε/2 and thus (5.5) follows

from

μv( # of e.v. of ap ^ ε/2) -* 0. (5.7)

Next, let R be the range of the potential Vχ 2 . Then, we will prove below that

\\χ(\Xl\>R + 1)PJ ^ Cx e x p ( - C.μ'1'2) (5.8)

with C 2 > 0. So write {δ will be chosen below)

S at? + α<,2>, (5.9)
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where α ^ (resp. α^2)) comes from inserting:

χ(|x J ^ K + 1)P + χ ( | x J g £ + l)Pχ(|x J §: £ + 1)

in place of P on the right side of (5.9). Incidentally, (5.9) comes from using (with

for x, A ^ 0 and

Next, notice that, by the one body result,

so a{p] is a sum of at most Cμ~v/2 terms, each of them of the form controlled by
Lemma 2.5 if 2 -f δ < v. By (5.8), each of these terms has a norm bounded by

so II oφ1} I -> 0 as μ -» 0. Thus, (5.7) follows from

μv( # of e.v. of α<? ̂  ε/4) -> 0 (5.10)

To prove (5.10), note that

for suitable constants C, D and ί̂  = — A . Thus:
letting B = χ( \ y \ g D)ίD

 x " dχ( | y \ ^ D), we see that, for a suitable constant C, C

( # ofe.v.ofα^^β/4)^dim(Pμ)(# of e.v. of 5 ^ εCμ1 + 5(Σμ - Σciy
δ)

S C(εCμ1+δ(Σμ - ΣdY
δγv'1 + δdimPμ

since B is in the weak trace ideal </^1 + <5 ([18, 3; 21]). Thus

rhs of (5.10) S (const.)(Σμ - ΣJδjl + δ

goes to zero as μ -> 0. |

Lemma 5.4. (5.8) holds.

Proof. It suffices to show that for any η with ( — μΔχ+ Vί2)η = eη e <~Σcr

II η II = 1: we have that

•C2μ~1/2). (5.11)

Now, pointwise:

Let G0(x — y) be the integral kernel of ( — A + 1)~ ί. By scaling. ( — μAx — j;Σcl)~x
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has an integral kernel:

Since || V ^ H J ̂  || Vί2 \\2 \\η | | 2 , we see that for | x | > R, the range of Vί2,

\η(x)\^Cμ-v/2Qxp{-μ-1/2D[\x\-R'])

from which (5.11) follows. |

This completes the three-body case. The iV-body case is similar with the follow-
ing changes: (1) For each D, there is an aD = min VD. The hypotheses of unique
clustering is Σcl = minaD, = aD for a unique D. (2) In the three-body case, we

D'

took Pμ to be the projection onto states of energy at most \ΣcV \Σcl = a entered
as a number between Σcl and 0 = bottom essential spectrum of hD. In the AT-body
case, we must pick α between Σcl and Σcl = min(αD, \D' • D,D' φ D). The control
of dim Pμ still comes from D — N bracketing. (3) In estimating terms, χ( | x ί | > R + 1)
is replaced by χ( \ ζ \ > R + 1) where | ζ \ is a measure of the total size of the internal
coordinates of D and R is defined by

{ζ\VD{Q<Σcl}<z{ζ\\ζ\<R}.

(4) In proving the analog of (5.8), we write VD=V* + V~ with V~ = min(0, — Σcl +
VD) and then if hDη — eη with e ̂  α we write

\η(x)\ g |(AOiD + FD

+ - e ) " J VD-»?(x)| g [(A0J, + Γc/ - eΓ 1 1 ^ " ^ ( x ) .

since F^" ̂  Σ d .
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