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Abstract. We argue that the McCurdy-Rescigno and Moiseyev-Corcoran methods used to 
calculate molecular resonances can be viewed as finite-matrix approximations to the 
mathematically precise 'exterior complex scaling' method of Simon. 

One of the more attractive pictures of atomic resonances is the method of complex 
scaling, reviewed extensively in Simon (1978). Briefly, the basic idea is to consider the 
action of the dilation operator U(8)  defined by 

(u(e)$)(rl, . . . , r n )  = exp(3ne/2)4(eer1, I . . , eern) 

for appropriate 4 in L2(d3rl . . . d3r,,), the space of square-integrable functions on 
3n-dimensional Euclidean space. For 8 real U(8)  is readily seen to be unitary. It 
therefore follows that for 8 real, H ( 8 )  = U(O)H(U(8))-'  is unitarily equivalent to H, 
where H is a self-adjoint operator defined on a domain in L2. Typically, H is a 
Schrodinger operator T + V, where T and V are the kinetic energy and the potential 
energy operators, respectively. One now considers the non-Hermitian operator 
H ( 8 ) =  U(e)H(U(O))- ' ,  where Im 8 # 0 .  If H is an atomic Hamiltonian, (i) the 
discrete energy levels of H remain as discrete energies of H ( 8 ) ,  (ii) the continuum 
rotates down about each atomic threshold by an angle -2 Im 8 and (iii) as the 
continuum rotates down it uncovers complex eigenvalues, whose real and imaginary 
parts are associated with the positiov and the width, respectively, of atomic resonances. 

On the one hand, there is a mathematically precise theory of complex scaling 
initiated by Aguilar and Combes (1971), Balslev and Combes (1971) and Simon (1972), 
which among other things leads to a proof of the convergence of time-dependent 
perturbation theory for autoionising resonances in atoms (Simon 1973). On the other 
hand, the method lends itself readily to finite-matrix approximations (variational 
calculations, but without a Rayleigh-Ritz principle) which have led to consistent results 
in agreement with experiments for few-electron systems; see Doolen et a1 (1978) for an 
especially impressive display of the numerical possibilitieg. Moreover, the method 
extends nicely to yield information about Stark resonances (Benassi et a1 1979, Graffi 
and Grecchi 1978, Herbst 1979, Herbst and Simon 1978, Reinhardt 1976). 

From a strictly mathematical point of view, one gap in the theory is that there are no 
precise theorems assuring the convergence of eigenvalues of the finite-matrix approx- 
imations to the eigenvalues of the non-self adjoint operators, H(8) ,  whose complex 
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eigenvalues are the resonance energies. We raise this point because this gap prevents 
our arguments below from being rigorous theorems. We emphasise that in the atomic 
case, there is extensive numerical evidence for rapid convergence of the matrix 
approximations (see e.g. Doolen 1978) although in the Stark problem some apparent 
resonances have disappeared under passage to larger matrices. 

This note concerns the extension of the method to molecular resonances, a subject 
on which there has recently been considerable discussion (McCurdy 1980, McCurdy 
and Rescigno 1978, Moiseyev and Corcoran 1979, Simon 1979). For a variety of 
reasons (see especially McCurdy and Rescigno 1978 and also Simon 1979) one wants to 
obtain resonance curves in a fixed nucleus (Born-Oppenheimer) approximation as 
functions of nuclear positions; that is, one only wants to scale electron coordinates and 
not nuclear coordinates. Unfortunately, for R fixed, V(r) = / r  -RI-' is not dilation 
analytic; the singularity at r = R blossoms into a circle of square-root branch points in 
V(eer) for 8 non-real; see Simon (1978). This difficulty can also be seen by doing the 
complex scaling in momentum space. If V(r) = Irl-', Q ( p )  = 4n--p/-'. Thus if VR(r) = 
Ir -RI-', QR(p) = exp(-ip * R) 4.rrlpl-'. In momentum space VR acts as 

If 4 is replaced with eieq, where 0 < 8 < n-, the kernel of the integral operator has 
exponential growth at infinity, with the result that VR(ei'r)$(eier) is not even defined for 
a reascnable $ such as the 1s eigenfunction of the hydrogen atom, where 

Two seemingly distinct approaches have been proposed to overcome these 
difficulties. An approach dubbed 'exterior complex scaling' has been presented by 
Simon (1979, 1981) which only scales the electron coordinates outside some large 
sphere. This method is mathematically precise and has most of the nice mathematical 
properties of ordinary complex scaling, but it seems to be difficult to implement in 
calculations. Two related ad hoc methods of calculation have been proposed by 
McCurdy (1980), McCurdy and Rescigno (1978) and Moiseyev and Corcoran (1979). 
To oversimplify the proposals, we can describe them as explicit realisations of an ad hoc 
procedure suggested earlier by Yaris et a1 (1978). If the usual complex scaling theory 
works and if I,,$ is a dilation analytic vector, then 

where +(e) = U(e)+ and H(B)  = U(O)H(U(O))-*. The proposal is then to use the 
right-hand side of equation (1) to obtain finite-matrix approximations to a non-existent 
'H(6)'  in cases where H(B) is not meaningful. Of course, in general this can be a 
dangerous procedure: for example using inverse scattering methods, one can construct 
potentials for which the scattering amplitude will have a natural boundary as the real 
axis is approached. However, the above method will 'predict' resonance energies in 
such a situation where there is no second sheet. 

One point of the exterior scaling theory is to guarantee the existence of a second 
sheet at least for matrix elements of the resolvent between dilation analytic vectors. Our 
purpose here is to explain why the eigenvalues of the McCurdy-Rescigno and 
Moiseyev-Corcoran methods can be viewed as finite-matrix approximations to the 
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positions of these second sheet poles. It is our hope that this realisation of a firm 
mathematical foundation will encourage further calculations with these methods. 

For each E > 0, let g, be the three-dimensional Gaussian 

which as E J O  approximates a 6 function. Let 

J 

This convolution technique is known as the Weierstrass transform and has been studied 
extensively (Hirschmann and Widder 1955). In general, the Weierstrass transform 
maps functions f ( x )  with dxf(x) exp(-cu 1x1') < 03 to analyticfunctions. Thus, for each 
E > 0, ~ ' " ' ( r )  is an entire function of r ;  explicitly, 

where erf(r)  is the error function, defined by 

erf(z) = 2?r-'l2 dt  exp(-t'). 16 
The smoothing effect of the Weierstrass transform is easily seen in momentum 

space: the singular kernel with exponential growth at infinity 

477 exp[-i(p -e-"q) ~ ] / / p  -e-ieq12 

is replaced by 

which for 0 < IIm 81 < ?r/4 has exponential fall off as q becomes large. Now fix some 
nuclear positions, R1, . . . , Rk and let H'"' denote the electron Hamiltonian for these 
nuclear positions with all Coulomb potentials Ix - y1-l replaced by V'"'(x - y) .  For 
Ro> maxi IRjl, one can consider the exterior scaled Hamiltonian Hk: (8) described in 
Simon (1979, 1981). For IIm el<$.., the potentials VkA(8) of equation (8) of Simon 
(1979) converge as E J O  uniformly to the Coulomb potential, so it is easy to prove that 

Il(Hg: ( e )  -z)- '  - (HRo(@)-Z)- l l l  0 

as E J O .  Thus, by general principles (Kato 1976, Reed and Simon 1978) eigenvalues 
E'"' of ~ $ 2  (e) converge to eigenvalues E of &,(e). 

Now consider finite-matrix approximations to all these problems using the right- 
hand side of equation (1). For N x N  approximations, let EN and EE' denote the 
corresponding eigenvalues. Clearly, by the above mentioned convergence of poten- 
tials, the right-hand sides of equation (1) converge so that for any finite N :  

E$)-+E, as E J O .  

The point is that since V'"' is entire and has fall-off in the region larg rl < $77, the 
usual complex scaling theory applies to the Hamiltonians H'"'. Moreover, by the 
universality theorem of Simon (1979) the eigenvalues, E'"' of Hkd (e) are identical to 
those of the usual complex scaled Hamiltonian H'"'(0). Therefore, to the extent that 
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one accepts finite-matrix approximations of dilation analytic problems, one should 
assume that 

E$) ~ E ( " )  as N + m .  

If we make the further reasonable leap of faith that this last convergence is uniform in E ,  

then one has that 

EN+E 

i.e. the complex eigenvalues of the McCurdy-Rescigno and Moiseyev-Corcoran 
methods should converge to the resonances defined by exterior complex scaling. 

To summarise; we view the methods of McCurdy (1980), McCurdy and Rescigno 
(1978) and Moiseyev and Corcoran (1979) as clever finite-matrix approximations to the 
precise mathematical theory of Simon (1979), and this view is supported by the 
apparent stability as N is increased in the calculations in McCurdy (1980), McCurdy 
and Rescigno (1978) and Moiseyev and Corcoran (1979). It seems to us that this type of 
finite-matrix approximation is about as firmly based as the kind of approximation used 
in ordinary complex scaling in atomic systems. 

Thus far we have discussed only electron-molecule resonances. The same Weier- 
strass transform technique works also for resonances of molecules in an external 
constant electric field. This fact is quite trivial, for the convolution of any linear function 
with the three-dimensional Gaussian (equation (2)) is precisely the same linear 
function. 

We would like to thank Stephen Scheinberg for introducing us to the Weierstrass 
transform. 

Notes added in proof. After this article was submitted we saw two papers (Deguchi K and Nishikawa K 1980 J. 
Phys. B: A t .  Mol. Phys. 13 L511-4, L515-8), which relate the Gaussian convolution technique to the 
generator coordinate method (Lathouwers L, van Leuven P and Bouten M 1977 Chem. Phys. Lett. 52 439). 

R Junker (1981 Phys. Rev.  Lett. to appear) has proposed a different way, exploiting the variational 
principle, of making the connection between exterior complex scaling and the calculation methods of 
McCurdy, Rescigno, Moiseyev and Corcoran. 
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