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BROWNIAN MOTION AND A CONSEQUENCE OF 
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NODES OF QUANTUM WAVE FUNCTIONS' 


M.HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND B. SIMON 


ABSTRACT. Using Brownian motion ideas, we give two proofs that for a large class 
of V's, (-A + V)u = Eu and u(x,,) = 0 implies that u changes sign near xo. 

1. Introduction. In this paper we will consider potentials on R' of the form 

with 

.rri a linear map of R' to RPi  

and 

E L,P(Rfi), p > 115/2,p > 1 .  

Here L,P is the set of uniformly local LPfunctions, i.e. functions with 

The complication of the vi7s is included to allow multiparticle potentials, 
V(r, ,. . . ,r,) = 2 K,(ri - 5);  ri E R 3  with Wij only required to be uniformly 
locally LP with p > 3 / 2  rather than p > 3n/2 .  The uniformly local functions are 
used to accomodate periodic potentials. 

Our main goal in this paper will be the following result. 

THEOREM1.1. Let V obey (1.1)-(1.3). Let u E Lm(R') be real and obey 

(-A + V ) u  = 0. (1.4) 
Suppose that u(x,) = 0.Then either 

(a) u is identically zero near xo or 
(b) u has both signs arbitrarily close to x,. 

REMARKS. (1) (1.4) is required in the sense of distributions. Equivalently, under 
the hypothesis, H - -A + V as a form sum defines a semibounded operator on L~ 

Received by the editors December 10, 1979. 
AMS (MOS)  subject clussifcationr (1970). Primary 35510, 60565; Secondary 35B05, 81A81. 
Key wordr andphrases. Nodes, Brownian motion. 
'Work supported in part by Fonds zur Fbrderung der wissenschaftlichen Forschung in ~sterreich, 

Project No. 3655 and U. S. NSF Grant MCS-7841855. 

O 1980 American Mathematical Society 
0002-9939/SO/OOO0-0522/$02.25 

301 



302 M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF AND B. SIMON 

and e-'H extends by density as an exponentially bounded semigroup on LP 
(p < co)and then by duality on L m  [8]. (1.4) thus holds in the sense that e-IHu = u 
for all t .  

(2) It is known [8] under the stated hypothesis that any L~ eigenfunction lies in 
L m  and any Lm eigenfunction is continuous. In particular, the condition u(xo) = 0 
is meaningful and, moreover, the theorem will apply to both bound state eigenfunc- 
tions and suitable continuum eigenfunctions. 

(3) The theorem asserts the nodal "surface" {xlu(x) = 0) must have (Hausdorff) 
dimension at least v - 1. 

(4) In many cases, it is known that (a) cannot occur if u is not identically zero; 
for the locally bounded case, see [S]; for certain unbounded V's see [6]. The atomic 
case is included. Thus, in those cases, we can assert that (b) occurs. 

For the case where 0 = inf spec(H) and u E L2, it is known that u is a.e. 
positive (Perron-Frobenius type result; see [S]) so that this theorem asserts that u is 
everywhere nonvanishng. This special case is not new in the mathematical physics 
literature. For sufficiently nice V's, it was originally proven by Simon [7]. Carmona 
[I], [2] had the idea of using Brownian motion to prove such results; his results 
were mildly improved upon in [8] and, in particular, the special case for V obeying 
(1.1)-(1.3) is to be found there. 

Our methods here are motivated by Carmona's ideas. In $2 we give a proof 
which is based on the idea that if neither (a) nor (b) is true, then u will be 
nonnegative near xo and strictly positive in an open subset of this "near region". In 
a Feynman-Kac formula for u(xo), small times will involve mainly paths in the near 
region so u(xo) will be positive. In $3, we give an even slicker proof using stopping 
times. 

There is another way of proving Theorem 1.1 using results in the P.D.E. 
literature. Trudinger [9] (see also Gilbarg and Trudinger [4]) has proven that for 
V's obeying (1.1)-(1.3), any u obeying (1.4) with u > 0 on some domain 52 C R' 
satisfies a so-called weak Harnack inequality 

sup u < C inf u 
x En' x€n. 

for every 52' strictly contained in 52. The constant C depends on a', 52 and LP(52) 
properties of V. We caution the reader that in [4] and [9], conditions (1.1)-(1.3) are 
not mentioned, but, in a remark, Trudinger states that (1.5) holds under a suitable 
form-boundedness requirement on V which is fulfilled for V satisfying (1.1)-(1.3). 
We should also mention that (1.5) is a local result. In fact, the conditions on V and 
u need to be only stated locally (replace LP(R') by LP(52) etc.). 

Theorem 1.1 follows trivially from (1.5). It would be interesting to find a proof of 
(1.5) using Brownian motion ideas. 

As for extensions of Theorem 1.1, we note that probabilistic methods and also 
Harnack inequality methods can be extended to a larger class of second order 
elliptic operators. Since A2(x2 + y2 + z2)= 0,the result will not hold for operators 
of order higher than two. 

The third author would like to thank W. Thirring for the hospitality of the 
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Institute for Theoretical Physics of the University of Vienna where this work was 
done. 

2. First proof: small time estimates. Our first proof exploits the intuition men- 
tioned already in $1. While we will freely use the language of Brownian motion (see 
e.g. [8]), one can give the proof without even mentioning Brownian motion using 
analytical ideas: the only really subtle point is a somewhat tricky use of the 
Hadamard three line lemma to replace Holder's inequality in the path integral. For 
an example of the kind of translation we have in mind compare the discussion of 
e-tH: L~+L m  in [8]and that in [3]. 

We will need the following lemma from [8]. 

LEMMA2.1. Let V obey (1.1)-(1.3). Then 

sup E(exp( - i t  V(X + b(s)) h) )< m. (2.1)
x E R Y ;O < t <  1 

In (2. l), b is Brownian motion and E its expectation value. 
Without loss of generality we suppose xo = 0. 
In both this proof and the next it is useful to note that if both (a) and (b)fail we 

can find positive E,, r, S and a vector x, with 

lxll < r/6, S < r/6 (2.2) 

so that 

u > 0 on {XI 1x1 < r) (2.3) 

and 

u > E~ on {xi Ix - x,l < S ) .  (2.4) 

To accomplish this we may need to replace u by -u and we use the continuity of u. 
FIRST PROOF OF THEOREM1.1. Let X, be the characteristic function of the set in 

(2.3), x2 = 1 - X, and x3 the characteristic function of the set in (2.4). By the 
Feynman-Kac formula and etHu = u, we have that, for any t, 

By hypothesis, A, > 0 and we will show that for t small IBtI <A,. This contradicts 
the assumption that u(0) = 0 and completes the proof. By the Schwarz inequality 

for all t E (0, 11. Here C , is E (and r) dependent. The first step uses the lemma and 
the second, the explicit Gaussian distribution of b(t). 
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On the other hand, we note that E(F2) > (E(FG)(~/E(G~)with 

so that 

> C2 exp{-r2/9(1 - e)t) 

where we used the lemma to get a lower bound on [E(exp{jbV(b(s)) &))I-' and 
supp x3 c {XI 1x1 < r/3) and the explicit Gaussian in the last step. Thus, for t 
small A, > JBIJ. 17 

3. Second proof: Stopping times. Recall 
DEFINITION.Let f(t, b) be a function [0, oo) x 9,with 9 the set of Brownian 

paths. f is called a supermartingale if and only if 
(i)f(t, b) is only a function of {b(s)ls < t). 
(ii) If E(. I{b(s)ls < t)) is a conditional expectation, then for w < t 

E(f(t3 .)l{b(s)Js < 4 )  < f(w9 .). (3.1) 
DEFINITION.A stopping time T is a map from 9 to [0, oo) so that {blr(b) < t) is 

only a function of {b(s)ls < t). 
The following lemma is proven in [8](it is fairly standard). 

LEMMA3.1. Let f be a supermartingale with sup,,l f(t, b)l < oo. Then 


E(f(0, .)) > E(f(.r(b), b)). 

REMARKS.
(1) f(0, b) is independent of b and thus a number. 
(2) The result is false if the sup-condition is dropped, see [a]. 
(3) The proof is very simple with the proper discrete approximation of T. The 

sup-condition comes in via a dominated convergence theorem which is used to 
remove the discretization. 

SECONDPROOF 1.1. Let V, max( + V, 0). Define OF THEOREM = 

and for w < t 

Then f(t, .) is only a function of {b(x)ls < t) and 

E(f(t, .)l{b(s)lx (w}) < E(g(w, t, b)l{b(s)ls < w)) = f(w, .) 
by the Markov property and the Feynman-Kac formula together with ei'-W)Hu = 

u. Clearly 

so for any stopping time 

E(f(.r(b), b)) < E(f(0, .)) = ~ ( 0 ) .  
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If the theorem fails, we may suppose that (2.2)-(2.4) hold. Let r(b) = first time 
that Ib(t)( = (x,(.Then, by (2.3), f(r(b), b) > 0 for all b. Moreover, by the lemma 
below and the fact that lb(r(b)) - x,l < 8 on a set of nonzero measure, f(r(b), b) 
> 0 on a set of nonzero measure. Thus E(f(r(b), b)) > 0 violating (3.2). 

LEMMA3.2. For a.e. b, 

PROOF.Since r(b) < m, a.e. it suffices that jLV(b(s)) ds < m a.e. b for each 
fixed t. But this is proven in [8]. 

NOTEADDED IN PROOF. A Brownian motion proof of (1.5) has been found (M. 
Aizenman and B. Simon, in preparation). 
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