JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 77, 482-492 (1980)

Unique Continuation for Schrodinger Operators with Unbounded Potentials*

M. SCHECHTER

Yeshiva University, New York, New York

AND

B. SIMON

Princeton University, Princeton, New Jersey 08544

Submitted by C. L. Dolph

We consider unique continuation theorems for solution of inequalities $|\Delta u(x)| \leq W(x) |u(x)|$ with W allowed to be unbounded. We obtain two kinds of results. One allows $W \in L^p_{loc}(\mathbb{R}^n)$ with $p \ge n-2$ for n > 5, $p > \frac{1}{3}(2n-1)$ for $n \le 5$. The other requires fW^2 to be $-\Delta$ -form bounded for all $f \in C_0^{\infty}$.

1. INTRODUCTION

In this paper, we want to consider unique continuation theorems in the following sense:

DEFINITION. We say that a function W on Ω , a connected open subset of \mathbb{R}^n , has the unique continuation property if and only if every function, u, obeying

$$|\Delta u(x)| \leqslant W(x) |u(x)| \tag{1.1}$$

which is equal to zero on some open set is identically zero on Ω .

The classical theorems going back to Carleman [2] and Müller [7] require that $W \in L_{loc}^{\infty}$. While there is an extensive literature on replacing Δ in (1.1) by more general differential operators (see Hörmander [5]), there appears to have been no previous attempts at allowing W's with local singularities. This is a situation first emphasized by Lavine.

^{*} Research partially supported by U.S. National Science Foundation under Grants MCS-76-04833 (Schechter) and MCS-78-01885 (Simon).

In Section 2, we will use a method of Protter [8] and show that W has the unique continuation property if for any $f \in C_0^{\infty}$, there is a, b with

$$\langle \eta, | f W^2 | \eta \rangle \leq a \langle \nabla \eta, \nabla \eta \rangle + b \langle \eta, \eta \rangle.$$
(1.2)

In Sections 3-7 we will exploit some ideas of Heinz [4] to prove the unique continuation property when $W \in L_{loc}^p(\mathbb{R}^n)$ $p \ge n-2$ for n > 5, $p > \frac{1}{3}(2n-1)$ for $n \le 5$. We note that while these results strengthen those of Section 2, so far as L_{loc}^p conditions are concerned, it can happen that (1.2) holds with $W \notin L_{loc}^p$, p given by the above. In particular, if n = 3N, $r = (r_1, ..., r_N)$, $r_i \in \mathbb{R}^3$ and $W = \sum_{i < j} V_{ij}(r_i - r_j) - E$, then (1.2) only requires that $V_{ij} \in L_{weak, loc}^3$ (independent of N), while for $N \ge 2$, L^p conditions require $V_{ij} \in L_{loc}^p$ with p = 2N - 2/3.

Our first result is a consequence of the following theorem which may be of interest in its own right. Let B^n be the unit ball in \mathbb{R}^n and put

$$||f||_p = \left(\int_{B^n} |f(x)|^p dx\right)^{1/p}, \qquad p \ge 1.$$

Then we have

THEOREM 1.1. Let p, q satisfy $1 < q \le 2 \le p$ and $(n-2)(1/q-1/p) \le 1$, (n-1)/q < 1 + (n/p), $1/p + 1/q \le 1$ (1.3)

Then there is a constant C such that

$$\|r^k f\|_p \leqslant C \, \|r^k \Delta f\|_q \tag{1.4}$$

holds for all integers k and all $f \in C_0^{\infty}(\mathbb{R}^n \setminus \{0\})$.

Since unique continuation is a local property, obviously one need only require that W be L_{loc}^p on $\Omega \setminus C$, with C a closed set of measure zero so that $\Omega \setminus C$ is connected. Thus the Müller theorem includes the important case of atomic potentials $(V_{ii}(r) = \alpha_{ii} |r|^{-1})$.

Let us emphasize the unsatisfactory nature of our results here. We are reasonable sure that any $W \in L^p_{loc} \mathbb{R}^n$) with p > n/2 has the unique continuation property but we are unable to prove this.

Finally, we should mention some recent related results of Amrein and Berthier [1] who prove tht for certain potentials, V, with local singularities, $-\Delta + V$ has no eigenfunctions of compact support (this is one of the main applications of the unique continuation property, see Kato [6] and Section 7). Since we have not seen the most detailed results of Amrein and Berthier, we cannot make a comparison.

SCHECHTER AND SIMON

2. PROTTER'S INEQUALITIES

We assume that (1.1) holds with W^2 being $-\Delta$ -form bounded in a ball B of radius $r_0 < 1$. By this we mean that

$$\|Wv\|^{2} \leq C(\|\nabla v\|^{2} + \|v\|^{2}), \qquad v \in C_{0}^{\infty}(B),$$
(2.1)

holds for some constant C, where the norm is that of $L^2(B)$. A sufficient condition for (7.1) to hold is that $W \in N_2^{\text{loc}}$, i.e., that

$$\int_{B \cap |x-y|<1} |W(x)|^2 |x-y|^{2-n} dx \leq C_0, \qquad y \in \mathbb{R}^n$$

(cf. [10]). In proving unique continuation under this hypothesis we shall make use of two inequalities due to Protter [8]. Take the center of B as the origin and put $w = w_{\beta}(r) = \exp\{r^{-\beta}\}$. Then there are constants β_0 and C_0 and a function $\sigma(\beta) \to 0$ as $\beta \to \infty$ such that if $\beta > \beta_0$

$$\beta^{4} \int r^{-2\beta-2} |wv|^{2} dx \leqslant C_{0} \int r^{\beta+2} |w\Delta v|^{2} dx \qquad (2.2)$$

and

$$\int |w\nabla v|^2 dx \leqslant \sigma(\beta) \int r^{\beta+2} |w\Delta v|^2 dx, \qquad (2.3)$$

where v vanishes outside $B \ wv \to 0$ as $r \to 0$ for every $\beta > 0$. Now suppose u satisfies (1.1) and vanishes near the origin. Let a be any number satisfying $0 < a < r_0$, and let φ be any function in $C_0^{\infty}(B)$ such that $\varphi \equiv 1$ for |x| < a. Put $v = \varphi u$. Then we have

$$\int_{r < a} r^{\beta + 2} |w \Delta u|^2 dx \leq \int r^{\beta + 2} |w W v|^2 dx$$
$$\leq C(||\nabla(wv)||^2 + ||wv||^2).$$
(2.4)

Since

$$\nabla(wv) = -\beta r^{-\beta-2}\vec{r}wv + w\nabla v,$$

we see by (2.2) and (2.3) that the left-hand side of (2.4) is bounded by

$$\sigma_1(\beta)\int r^{\beta+2}|w\Delta v|^2\,dx,$$

where

$$\sigma_1(\beta) = 3C_0\beta^{-2} + 2\sigma(\beta).$$

Take β so large that $\sigma_1(\beta) < \frac{1}{2}$. Then

$$\int_{r< a} r^{\beta+2} |w \Delta u|^2 dx \leq 2\sigma_1(\beta) \int_{r>a} r^{\beta+2} |w \Delta v|^2 dx.$$
(2.5)

Combining this with (2.2) we obtain

$$\int r^{-2\beta-2} |wv|^2 \leqslant \sigma_2(\beta) \int_{r>a} |w\Delta v|^2 dx, \qquad (2.6)$$

where

$$\sigma_2(\beta) = C_0(1 + 2\sigma_1(\beta))\beta^{-4}$$

But (2.6) implies

$$\int_{r < a} |u|^2 dx \leqslant a^{2\beta + 2} \sigma_2(\beta) \int_{r > a} |\Delta v|^2 dx \to 0 \quad \text{as} \quad \beta \to \infty.$$

This shows that $u \equiv 0$ for |x| < a. Since a was any value $< r_0$, we see that $u \equiv 0$ in B. The argument in an arbitrary domain is standard.

We have therefore proved:

THEOREM 2.1. If W obeys (2.1), u obeys (1.1) and it vanishes in a small ball, then u = 0.

3. ESTIMATE IN ONE DIMENSION

In order to prove the inequality that we shall use for our unique continuation theorem, we shall make use of a one-dimensional estimate applied to each partial wave. The estimate, which extends estimates of Heinz [4], is given by

THEOREM 3.1. For s real, let

$$L_{s}u = u'' - s(s+1)x^{-2}u.$$
(3.1)

Then

$$|(2s+1)x^{\alpha}f(x)|^{p'} \leq (|p(s+\alpha+1)|^{-1/p} + |p(s-\alpha)|^{-1/p})^{p'} \int_{0}^{1} |y^{\alpha+1+1/p}L_{s}f(y)|^{p'} dy \quad (3.2)$$

for all real a, s, 1 , where <math>p' = p/(p-1).

Proof. If $g = L_s f$, it is easily checked that (2s + 1)f = u + v, where

$$u(x) = \int_0^x x^{s+1} y^{-s} g(y) \, dy, \qquad v(x) = \int_x^1 x^{-s} y^{s+1} g(y) \, dy. \tag{3.3}$$

Since $L_s y^{-s} = L_s y^{s+1} = 0$ and f vanishes near 0 and 1, integration by parts yields

$$\int_0^1 y^{-s} g(y) \, dy = \int_0^1 y^{s+1} g(y) \, dy = 0. \tag{3.4}$$

If $s + \alpha + 1 = 0$ or $s = \alpha$, the right-hand side of (3.2) is infinite, so there is nothing to prove. If $\beta = -p(\alpha + s + 1) > 0$, we have

$$|x^{\alpha}u(x)| \leq x^{s+\alpha+1} \left(\int_0^x y^{\beta-1} \, dy \right)^{1/p} \left(\int_0^x y^{-p'((\beta-1)/p+s)} \, |\, g(y)^{p'} |\, dy \right)^{1/p'}.$$

Thus

$$|x^{\alpha}u(x)|^{p'} \leq \beta^{-p'/p} \int_0^1 |y^{\alpha+1+1/p} g(y)|^{p'} dy.$$

If $\beta < 0$, we have by (2.4)

$$|x^{\alpha}u(x)| \leq x^{s+\alpha+1} \left(\int_{x}^{1} y^{\beta-1} dy\right)^{1/p} \left(\int_{x}^{1} y^{-p'((\beta-1/p)+s)} |g(y)|^{p'} dy\right)^{1/p'}.$$

Thus

$$|x^{\alpha}u(x)|^{p'} \leq |\beta|^{-p'/p} \int_0^1 |y^{\alpha+1+1/p}g(y)|^{p'} dy$$

Similarly, if $\sigma = p(s - \alpha) > 0$, we have

$$|x^{\alpha}v(x)| \leq x^{\alpha-s} \left(\int_0^1 y^{\sigma-1} \, dy \right)^{1/p} \left(\int_0^x y^{p'(s+1-(\sigma-1)/p)} \, |g(y)|^{p'} \, dy \right)^{1/p'}$$

which gives

$$|x^{\alpha}v(x)|^{p'} \leq \sigma^{-p'/p} \int_0^1 |y^{\alpha+1+1/p} g(y)|^{p'} dy.$$

If $\sigma < 0$, we get

$$|x^{\alpha}v(x)| \leq x^{\alpha-s} \left(\int_{x}^{1} y^{\sigma-1} \, dy \right)^{1/p} \left(\int_{x}^{1} y^{p'(\alpha+1-(\sigma-1)/p)} \, |g(y)|^{p'} \, dy \right)^{1/p'}$$

which gives

$$|x^{\alpha}v(x)|^{p'} \leq |\sigma|^{-p'/p} \int_0^1 |y^{\alpha+1+1/p} g(y)|^{p'} dy.$$

These inequalities give the desired result.

4. Spherical Harmonics

In dealing with functions on \mathbb{R}^n , n > 2, we shall use partial wave expansions. If r = |x| and f(x) is a function in $L^2(|x| < 1)$, we can expand it in the form

$$r^{\gamma}f(r\xi) = \sum f_{lm}(r) Y_{lm}(\xi), \quad \gamma = (n-1)/2,$$
 (4.1)

where $\xi = x/r$ and the Y_{lm} are surface harmonics (cf. [3]). For each integer $l \ge 0$, there are

$$h(l) = (2l+n-2) \frac{(l+n-3)!}{(n-2)! \, l!} \tag{4.2}$$

such polynomials. The $\{Y_{l,m}\}$ form a complete orthonormal sequence in $L^2(\Omega)$, where Ω is the unit sphere |x| = 1 in \mathbb{R}^n . The "coefficients" $f_{l,m}(r)$ are functions of r alone and are given by

$$f_{l,m}(r) = r^{\gamma} \int_{\Omega} f(r\xi) Y_{l,m}(\xi)^* d\xi.$$
 (4.3)

If $v = r^{\gamma}h(r)$, then

$$v'' = r^{\gamma}(h'' + (n-1)r^{-1}h' + \frac{1}{4}(n-1)(n-3)r^{-2}h)$$

and

$$\Delta(hY_{l,m}) = (h'' + (n-1)r^{-1}h' - l(l+n-2)r^{-2}h)Y_{l,m}.$$

From this it follows that

$$\Delta f(r\xi) = r^{-\gamma} \sum L_s f_{l,m}(r) Y_{l,m}(\xi), \qquad (4.4)$$

where

$$s(s+1) = l(l+n-2) + \frac{1}{4}(n-1)(n-3).$$

409/77/2-11

This will be satisfied if we take

$$s = \frac{1}{2}(2l + n - 3).$$
 (4.5)

An important property of the $Y_{l,m}$ is

$$\sum_{m=1}^{h(l)} |Y_{l,m}(\xi)|^2 = \frac{h(l)}{\omega},$$
(4.6)

where ω is the surface area of Ω (cf. [3]).

5. L^p Inequality on Ω

Let $a(\xi)$ be a function in $L^{\infty}(\Omega)$. We can expand it in terms of surface harmonics. Thus

$$a(\xi) = \sum_{l,m} a_{l,m} Y_{l,m}(\xi)$$
(5.1)

where

$$a_{l,m} = \int_{\Omega} a(\xi) Y_{l,m}(\xi)^* d\xi.$$
 (5.2)

Let $Y_l(\xi)$ be the h(l)-dimensional vector function $Y_l(\xi) = \{Y_{l,1}(\xi), ..., Y_{lh}(\xi)\}$ and let a_l be the vector $\{a_{l,1}, ..., a_{l,h}\}$. Then (5.1) becomes

$$a(\xi) = \sum_{l} a_{l} \cdot Y_{l}(\xi).$$
(5.3)

Since the $Y_{l,m}$ are orthonormal, we have

$$\|a\|_{L_2(\Omega)}^2 = \sum_l |a_l|^2.$$
 (5.4)

Now (4.6) says that $|Y_l|^2 = h(l)/\omega$. Thus by the Schwarz inequality

$$\|a\|_{L^{\infty}(\Omega)} \leq \omega^{-1/2} \sum_{l} h(l)^{1/2} |a_{l}|.$$
 (5.5)

If we now apply interpolation to these inequalities, we obtain

$$\|a\|_{L^{p}(\Omega)}^{p'} \leqslant C \sum_{l} h(l)^{1-p'/2} |a_{l}|^{p'}, \qquad 2 \leqslant p \leqslant \infty.$$
 (5.6)

Moreover, a simple duality argument then gives

$$\sum_{l} h(l)^{1-q'/2} |a_{l}|^{q'} \leq C ||a||_{L^{q}(\Omega)}^{q'}, \qquad 1 < q \leq 2.$$
(5.7)

6. PROOF OF THEOREM 1.1

If we apply (5.6), we have

$$\|r^{\alpha}f(r\xi)\|_{L^{p}(\Omega)}^{p'} \leqslant C \sum_{l} h(l)^{1-p'/2} |r^{\alpha-\gamma}f_{l}(r)|^{p'}$$
(6.1)

by (4.1), where $f_l(r) = \{f_{l,1}, ..., f_{l,h}\}$. If we apply Theorem 3.1, we have $|(2l + n - 2) r^{\alpha - \gamma} f_l(r)|^{p'}$

$$\leq (|p(l+\alpha)|^{-1/p} + |p(l+n-\alpha-2)|^{-1/p})^{p'} \int_0^1 y^{\alpha-\gamma+1+1/p} |L_s f_l(y)|^{p'} dy$$
(6.2)

since s is given by (3.5). Note that

$$C^{-1}(l+1)^{n-2} \leq h(l) \leq C(l+1)^{n-2}.$$
 (6.3)

Thus, if we put $g_l = L_s f_l$ and

$$m(l) = |p(l+\alpha)|^{-1/p} + |p(l+n-\alpha-2)|^{-1/p},$$

we get

$$\|r^{\alpha}f(r\xi)\|_{L^{p}(\Omega)}^{p'} \leq C \sum (l+1)^{(n-2)(1-p'/2)-p'} m(l)^{p'} \int_{0}^{1} |y^{\alpha-\gamma+1+1/p} g_{i}(y)|^{p'} dy.$$

If k is an integer and $\delta = (n-1)/p$, we get

$$\|r^{k+\delta}f(r\xi)\|_{L^{p}(\Omega)}^{p'} \leq C \sum (l+1)^{(n-2)(1-p'/2)-p'} m_{k}(l)^{p'} \int_{0}^{1} |y^{k+\delta-\gamma+1+1/p} g_{l}(y)/p' \, dy, \quad (6.4)$$

where

$$m_k(l) = |p(l+k+\delta)|^{-1/p} + |p(l+n-k-\delta-2)|^{-1/p}.$$

We estimate the right-hand side of (6.4) by

$$C\left(\sum (l+1)^{-\mu\rho}\right)^{1/\rho} \left(\sum m_{k}(l)^{p'\sigma}\right)^{1/\sigma} \times \int_{0}^{1} \left(\sum_{1} (l+1)^{(n-2)(1-q'/2)} |y^{k+\delta-\gamma+1+1/\rho} g_{k}(y)|^{p'\tau}\right)^{1/\tau} dy, \quad (6.5)$$

where

$$\rho^{-1} + \sigma^{-1} + \tau^{-1} = 1, \qquad \mu \rho > 1, \ p' \sigma > p, \ p' \tau = q'$$
 (6.6)

and

$$\mu = p' \left[1 + (n-2) \left(\frac{1}{p} - \frac{1}{q} \right) \right].$$
 (6.7)

(If $\mu = 0$, we take $\rho = \infty$.)

We shall show that under the hypotheses of Theorem 1.1 one can find μ , p, σ , and τ satisfying (6.6) and (6.7). Assuming this for the moment, we note that the first factor in (6.5) is finite. The second is bounded independently of k provided δ is not an integer. In fact we have

$$\sum_{l=0}^{\infty} |p(l+k+\delta)|^{-\nu} \leq |p|^{-\nu} \sum_{j=-\infty}^{\infty} |j+\delta|^{-\nu},$$
 (6.8)

where $v = p'\sigma/p > 1$. By (4.4) and (5.7), the last factor in (6.5) is bounded by

$$C \int_{0}^{1} \|r^{k+\delta+1+1/p} \Delta f(r\xi)\|_{L^{q}(\Omega)}^{p'} dr$$

$$\leq C \left(\int_{0}^{1} \|r^{k+\delta+1+1/p} \Delta f(r\xi)\|_{L^{q}(\Omega)}^{q} dr \right)^{p'/q}$$

$$= C \|r^{k+\delta-\beta+1+1/p} \Delta f\|_{q}^{p'},$$
(6.9)

where $\beta = (n-1)/q$. Since

$$\delta - \beta + 1 + \frac{1}{p} = (n-1)\left(\frac{1}{p} - \frac{1}{q}\right) + 1 + \frac{1}{p} > 0, \tag{6.10}$$

this gives

$$\sup_{r\leqslant 1} \|r^{k+\delta}f(r\xi)\|_{L^{p}(\Omega)} \leqslant C \|r^{k}\Delta f\|_{q}.$$
(6.11)

Since

$$||r^{k}f||_{p}^{p} = \int_{0}^{1} ||r^{k+\delta}f(r\xi)||_{L^{p}(\Omega)}^{p} dr,$$

we obtain the desired inequality. It remains to show that one can find constants μ , σ , and τ satisfying (6.6) and (6.7) under the hypotheses of Theorem 1.1. Put x = 1/p, y = 1/q. Then (6.6) and (6.7) are implied by

$$\mu > 0,$$
 $(n-1)(y-x) < 1 + x$
 $\mu = 0,$ $\rho = \infty, y < 2x.$ (6.12)

or

THEOREM 6.1. For any $\varepsilon > 0$ there exists p, q such that the conclusion of Theorem 1.1 holds and

$$\frac{1}{q-1} = \frac{1}{n-2} \qquad \text{if} \quad n > 5$$
$$> \frac{3}{2n-1} - \varepsilon \qquad \text{if} \quad n \le 5.$$

Proof. For n > 5, take x = (n-3)/2(n-2), y = (n-1)/2(n-2). For $n \le 5$, take x = (n-2)/(2n-1), $y = (n+1)/(2n-1) - \varepsilon$. Both (6.10) and (6.12) are satisfied. ■

7. UNIQUE CONTINUATION THEOREM

THEOREM 7.1. Let u obey (1.1) and $W \in L_{loc}^{r}(\mathbb{R}^{n})$ with

r=n-2	if	<i>n</i> > 5
$> \frac{1}{3}(2n-1)$	if	n ≤ 5.

Then if u = 0 in a small ball, then u = 0 everywhere.

Proof. By a standard connectedness argument, it suffices to show that there are some fixed R_0 depending only on local L^r norms of W so that u(x) = 0 for x near zero implies u(x) = 0 for $|x| < R_0$. Choose R_0 so small that $R_0 < 1$ and $(\int_{|x| < R_0} |W(x)|^r dx)^{1/r} \leq \frac{1}{2}$. Let χ be a C^{∞} function supported in the unit ball which is identically one on the ball of radius R_0 . Then, for k a negative integer, we let $p = (\frac{1}{2} - 1/2r)^{-1}$; $q = (\frac{1}{2} + 1/2r)^{-1}$ and use Theorem 6.1:

$$\left(\int_{|x|\leqslant R_0} |r^k u|^p dx\right)^{1/p} \leqslant ||r^k f||_p$$

$$\leqslant ||r^k \Delta f||_q$$

$$\leqslant \left(\int |r^k \Delta u|^q dx\right)^{1/q} + CR_0^k$$

$$\leqslant \frac{1}{2} \left(\int |r^k u|^p dx\right)^{1/p},$$

where we use (1.1) and Holder's inequality in the last step. Taking $k \to -\infty$, we conclude that $u \equiv 0$ on the ball of radius R_0 .

SCHECHTER AND SIMON

8. Application

Applications of unique continuation are often to eliminate the possibility of positive eigenvalues; here is a typical example; see Section XIII.13 of [9] for more complicated examples.

THEOREM 8.1. Let W have compact support and lie in L^r with r given in Theorem 7.1. Then $-\Delta + W$ (the form sum) has no positive eigenvalues.

Proof. Let W have support inside the ball of radius R_0 . Suppose that $-\Delta u + Wu = Eu$ with E > 0. Expand u in spherical harmonies and use the fact that for $x > R_0$, the components u_{lm} obey a second-order equation whose solutions are Bessel functions which are easily seen to be non-square integrable. Thus u(x) = 0 if $|x| > R_0$. It follows that $u \equiv 0$ by Theorem 7.1.

ACKNOWLEDGMENTS

We would like to thank Lavine for raising this problem and one of us (B.S.) would like to thank Yeshiva University for its hospitality in 1976–77 when he was a visitor and this research was initiated. We would like to thank W. Amrein, A. M. Berthier and V. Georesgu for pointing out an error in a preliminary version of this paper.

References

- 1. W. AMREIN AND A. BERTHIER, private communication.
- T. CARLEMAN, Sur un problème d'unicité pour les systèmes d'équations aux derivés particles à deux variables indépendantes, Ark. Mat. 26B (1939), 1-9.
- ERDELYL, MAGNUS, OBERHETINGER, AND TRICOMI, "Higher Transcendental Functions," Vol. 2, Chap. XI, McGraw-Hill, New York, 1953.
- E. HEINZ, Uber die Eindeutigkeit beim Cauchyschen Anfabgswertproblem einer elliptischen Differentialgleichung zweiter Ordnung, Nachr. Akad. Wiss. Gottingen Math.-Phys. Kl. II, (1955), 1-12.
- 5. L. HORMANDER, "Linear Partial Differential Operators," Springer, New York, 1964.
- 6. T. KATO, Growth properties of solutions of the reduced wave equation with variable coefficients, Comm. Pure Appl. Math. 12 (1959), 403-425.
- 7. C. MULLER, On the behavior of the solutions of the differential equation $\Delta u = f(x, u)$ in the neighborhood of a point, Comm. Pure Appl. Math. 1 (1954), 505-515.
- M. H. PROTTER, Unique continuation for elliptic equations, Trans. Amer. Math. Soc. 95 (1960), 81-91.
- 9. M. REED AND B. SIMON, "Method of Modern Mathematical Physics, IV. Analysis of Operators," Academic Press, New York, 1978.
- 10. M. SCHECHTER, "Spectra of Partial Differential Operators," North-Holland, Amsterdam, 1971.