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Abstract. We extend the analysis of Paper I from two body dilation analytic
systems in constant electric field to JV-body systems in constant electric field.
Particular attention is paid to what happens to isolated eigenvalues of an
atomic or molecular system in zero field when the field is turned on. We prove
that the corresponding eigenvalue of the complex scaled Hamiltonian is stable
and becomes a resonance. We study analyticity properties of the levels as a
function of the field and also Borel summability.

1. Introduction

Our goals in this paper are to extend the formalism developed by Herbst [16]
(which describes complex scaling in the presence of constant electric field) from
two body systems to JV-body systems, to recover the beautiful results of Graffi and
Grecchi [13] on Borel Summability of the hydrogen Stark problem within this
framework and to extend these summability results to multielectron atoms. Some
of our results were announced in [17]. Subsequently, Graffi and Grecchi [37]
developed a different formalism which allows a discussion of certain JV-body
systems in electric field. Their analysis appears to require that all particles have
charges with the same sign. Moreover, their method does not reduce to ordinary
complex scaling when the electric field is absent. However, since they need only
treat strictly sectorial operators, their method has some technical advantage over
ours.

While it is probable that with some extra effort, we could handle quadratic
form perturbations and non-local potentials, we will use the operator class of
Aguilar-Balslev-Combes [2, 8] and restrict to local potentials. As usual, let
§ - L2(RV), t=-A, (u(θ)f) (r) = evθl2f(eθr) for θ real and §+ 1 = D(t) with the graph
norm. Notice that u(θ) is bounded from §+1 to itself.
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Definition. Fix φ>0. A self-adjoint multiplication operator, V, on L2(1RV) is said to
lie in Cjf if and only if:

(i) D(V}^)D(t\ so V can be viewed as an operator in JS?(§ + 1,£>).
(ii) As an operator in &($+1, §), V is compact, i.e., V(t -f- 1)~ * is compact from

(iii) 7(0) = w(0) Pίί(θ) 1 as an j£f(§ + 1,ί>)- valued function has an analytic
continuation from θe(— oo, oo) to {0||Im0|<φ}.

Aguilar and Combes [2] developed the complex scaling theory for —A + V
with FeC^f and Balslev and Combes [8] the corresponding multibody theory
(neither were restricted to multiplication operators). Let e be a fixed unit vector in
IRΛ The Aguilar-Balslev-Combes theory does not extend to — A + V(x) + fe x
and, at first sight, it appears hopeless to try to extend complex scaling to this
setting because of the singular nature oίe-x. However, Reinhardt [24] boldly tried
calculations for this problem and this motivated [16]. While we will freely use
technical lemmas from [16], let us summarize its results to put those in this paper
into perspective. Fix 7eC^f; /φO. For θ with Imθe[0,π/3) and Imθ<φ, let

h0(θ)=-e-2θA+feθe x

h(θ) = hQ(θ)+V(θ).
Then:

(1) For Imθ>0, h0(θ) and h(θ) are closed operators on D(t)nD(e-x) and
ie~θh0(θ), ie~θh(θ) are generators respectively of contraction and exponentially
bounded semigroups. For 0 = 0, the operators are essentially self-adjoint on

(2) For Im0>0, σ(hQ(θ)) is empty and σ(h(θ)) is purely discrete, i.e., isolated
eigenvalues of finite algebraic and geometric multiplicity. In this region, σ(h(θ)) is θ
independent and in the lower half-plane.

(3) For fixed z with Imz>0,

5-lim (h(θ) -z)~ί = (h(θ = 0) - z) ~ * .
Im<HO;(9^0 V ^ ' ' ^ ^ ' '

(4) If z < 0 is an eigenvalue of ί + V of multiplicity d, then for all / sufficiently
small and θ with ImθΦO, h(θ) has at most d eigenvalues near z and their combined
multiplicities is exactly d.

All these results are from [16] except for two. First, it is not noted there that
ie~θh(θ) generates an exponentially bounded semigroup. This follows from the
analysis of ίe~θh0(θ) in [16], the quadratic estimates there [16] and the theory of
perturbation of semigroups [22]. The self-adjointness oϊh(θ = 0) follows from ideas
of Faris and Lavine [12]. Secondly, (3) was only proved in [16] under an extra
hypothesis. Here is a general proof of (3): By the result of Faris and Lavine [12],
(h(θ = 0)-z) [̂ ] is dense. Since for ηe&>, [h(θ)-h(θ = OΪ]η-+Q as θ-^0 we need
only show that \\(h(θ) — z)~l\\ is uniformly bounded if Imz>0, Im0>0, and \θ\ is
sufficiently small. We will show that there is an £0>0 so that for Im0>0 and
sufficiently small, the numerical range of h(θ) lies below the line { — E0 + eθs : seR}
and by sectoriality considerations this will complete the proof. By the unitarity of
u(θ) for θ real it thus suffices to show

(1.1)
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for α>0 sufficiently small. Choose α0>0 with α0<Min{φ,π/3} so that sinα^α/2
and sin3α^α/2 for αe[0,α0]. Since e~ΘV(θ) (ί-f-1)"1 is compact and analytic in
|Imθ|«/> we can choose ^V(θ)e~θ(t + E)~1^ to be as small as we like for
ImθG [ — α0, α0], |Reθ| ̂  1 by taking E large enough. For E0 large enough we can
thus obtain the bound

— V(iθL)e~ίa(t + EQΓl ^V2; αe[-α0,α0] (1.2)
da

by a Cauchy estimate. (1.2) implies (by integration)

and by interpolation

||(ί 4-£0)~ 1/2(F(iα)e~ία- 7(0))(ί + £0)~1/21| ^α/2 αe [0, α0]. (1.4)

Thus

Imfa, V(i^e-^η} = lm(η^V(ίa)e-^~ V(ΰ))η)^ (η9(t + E0)η). (1.5)

Hence for αe[0,α0], (1.5) gives

which is rgO by our choice of α0.
We emphasize the condition above that Imβ<π/3, since at Imθ = π/3 the

spectrum is again continuous on account of hQ(iπβ) being unitarily equivalent
(under x-^ — x) to — eιπ/3h0(θ = Q). Also the convergence in (3) is definitely not
norm convergence, nor does it hold for z with 0> Argz> — π.

In this paper, we wish to consider operators on L2(IR]Vv) of the form :

or the slightly more general operators that arise from removing the center of mass
motion from general JV-body systems. The extension of properties (l)-(3) to this
setting will be fairly easy : the only real restriction other than the obvious one that
all potentials lie in some C^ will be that certain requirements on the g.'s and mf's
are necessary for (2) to extend - for example, in the above case where there is an
infinite mass particle we need to know that there exists no non-trivial breakup into
two or more clusters each of which is neutral. We will accomplish this in Sect. 2.

The extension of property (4) will not be so easy for the following reason. In
[16], the resolvent equation (h(θ)-zΓΐ =(h0(θ)-zΓl (1 + V(θ) (h^-z)'1)'1

was used extensively. A key role was played by the fact that the numerical range of
h0(θ) was precisely {(Σ + y)e~2θ + xeθ:y^Q, xεl&}=K with Σ = infspeφ0(θ = 0,
/ = 0)), i.e., zero. This equality for Σ is true because for / = 0, h0(θ) is normal so that
its numerical range is the convex hull of its spectrum. For JV-body systems, the
natural replacement of the resolvent equation is a Weinberg-van Winter or other
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JV-body equation with compact kernel. This will involve operators HD(Θ) built out
of subsystems and we will need a bound on (HD(Θ) — z)~l uniform in small / for
zφK where K is the above set with Σ now the lowest threshold oϊH(f = 0). Because
HD(θ,f = 0) is not normal, the numerical range of HD(Θ) will not lie in K in general,
even though K contains the convex hull of the spectrum of HD(Θ, f = 0), so the
bound on (HD(Θ) — z) ~l will be more subtle to obtain. In Sect. 3, we will show how
to obtain a bound of the form:

\\(HD(θ,f)-zΓ1|| ^Ct[dist(z,K)-ε]-1 (1.6)

for all z with dist(z,K)>ε. Here Cε is an ε dependent constant and (1.6) will only
hold for I/I <F(θ,ε). (1.6) will follow from an estimate

||eχp[ _ t(ίe-θHD(θ, /)] || g Cε exp ί . (1.7)

(1.7) will be proven by developing an equation for the semigroup analogous to the
Weinberg-van Winter equation; indeed it will just be the inverse Laplace
transform of that equation.

Once we have the estimate in (1.6) the stability method of Avron et al. [4]
exploited in [16] will yield stability in the JV-body case for eigenvalues below the
lowest threshold. Indeed, we will be able to obtain a resonance eigenvalue in a
sector of the complex plane. Specifically, so long as all potentials lie in Cjf with φ
sufficiently large (e.g., Coulomb potentials), we will know that for any non-
degenerate eigenvalue, E0, of H(θ = 0, / = 0), there will be an eigenvalue, £(/), of
H(θ,f) for / small, real and positive and any 0 with 0<Im$<π/3. Then E(f) is
analytic in regions of the form {/|0 < |/| < Rδ, — π/2 + δ < arg/ < 3π/2 — δ}. We will
also obtain analogous results for some degenerate eigenvalues £0. In particular,
this will allow us to recover the Graffi-Grecchi result [13] on Borel summability
of the Stark eigenvalue in Hydrogen and a similar result in atoms and molecules.
We also relate the width of the resonance to the growth of the coefficients in the
perturbation series. These results on analyticity of eigenvalues may be found in
Sect. 4. The necessary estimates to complete the proof of Borel summability can be
found in Appendix A. In Sect. 5, we describe falloff properties of eigenfunctions.

It is known that for hydrogen in a non-zero (real) electric field, the
(unsealed) Hamiltonian has no eigenvalues, i.e., imaginary parts of resonance
energies are non-zero. This is a result of Titchmarsh [32] see also [1, 3]. So far as
we can determine, their proofs do not extend to multielectron atoms. In [17], we
announced a result to the effect that discrete eigenvalues of atoms turn into
resonances whose imaginary part is necessarily non-zero. Unfortunately our
method of proving this last fact ran into certain technical difficulties in the
multiparticle case. Since we feel the basic scheme which relies on ideas of Balslev
[7] and Simon [25] may be sound and since the difficulties illustrate our
ignorance of certain questions in operator theory, we describe the method for two
bodies and some of the problems in extending to JV-bodies in Sect. 6.

In Appendix C, we describe some basic estimates which we found and which
one of us has used elsewhere [28].
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We refer the reader to [43] where the subject of Schrodinger operators with
electric fields is reviewed. The Weinberg-van Winter semigroup analysis of this
paper is replaced there by a simpler techniqe.

It is a pleasure to thank S. Graffi, V. Grecchi, E. Harrell, and W. Reinhardt for
valuable discussions.

2. Basic Spectral Analysis

We want to consider JV+1 particles in v dimensions with masses m1,...,m]V+1 and
charges ql9 ...,qN+1. The basic Hamiltonian in a constant electric field —\f\e (e a
unit vector in Rv) is thus :

N + l \

£ qf\. (2.1)
j=ι /

We begin by discussing removal of the center of mass motion, a subject already
explained briefly in [5]. As usual we define

N + l

N + l

M = X m.
j = ι

and let ζ be a generic symbol for a linear function of the r — ly Also as usual the
basic Hubert space, § = L2(RV(N+1)) is factored as

with §CM^L2(RV) functions of R and §^L2(Rv]v) functions of the £'s. j&0(|/|)
factors as :

where

Hc

0

M=-(2MΓ1AR + \f\e^(QR) (2.2)

with

N + l

e= Σ «r
7=1

The exact formula for H0(\f\) will not concern us.
For later purposes, we note the condition that all the electric field terms are

absorbed in H™.

Proposition 2.1. H0(\f\) is independent of\f\ if and only if qί/mi = Q/M for all i.

Proof. One clearly has independence if and only if

N + l

QR= .Σ ifi
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The formula for R completes the proof. Π

The operator on L2(]RNv) obtained from (2.1) by suppressing AN+l and
qN+1rN+ι will also be denoted by H0(\f\). In that case, we say that "mN+l is
infinite".

For Θ complex and η real, we also introduce the symbol H0(|/|, θ, η) for the
object obtained by removing the center of mass from

J V + l N + l

H0(\f\9θ9η)=-e-2θ Σ (2mjΓ
1Δj+\f\eί^eeέ' Σ «Λ- (2 3)

7=1 7=1

Given ^N(N+l) potentials Ff j.eCjf, the Combes class of Sect. 1, we identify Vtj

as a function of ri — r^ (if mN+1 = oo, Vi N+1 is a function of r f) and let for \lmθ\<φ

v(θ)= Σ v,m

9 η ) = H Ό ( \ f \ 9 θ 9 η ) + V ( θ ) .

The reason for including an η in the above is to allow f = \f\eιη to be non-real
when we consider analyticity properties in /

Theorem 2.2. (a) H(\f\) is essentially self-adjoint on ^(1RV]V).
(b) The operator

L Q ( \ f \ 9 θ 9 n ) = ie-^-βHQ(\f\9θ9n) (2.4)

defined on D( — A)nD(e ^qj(rj — R)) = ̂  is closed and the generator of a contraction
semigroup so long as |/|>0 and Re(/£~3θ~Iί7)>0, i.e., 0<3Imθ + η<π.

(c) The operator

L(\f\,θ,η) = ie-" -βH(\f\,θ,η) (2.5)

defined on & is closed and the generator of an exponentially bounded semigroup so
long as |/|>0, 0<3Imθ + η<π and \Imθ\<φ9 the angle in C$.

(a) HQ(\f\9 θ, η) and H(\f\9 θ, η) are holomorphic families of type (A) as functions of
θ and f = \f\eίη in the region

{(0,/)|0<3Imθ + ̂ <π,|Imθ|<φ,|/|>0}Ξ^. (2.6)

Proof, (a) This follows from the Faris-Lavine theorem; see [12] or [22; Sect. X.5].
(b) This is a restatement of results of Herbst [16] see Theorems II. 1 and II.3

of that paper.
(c) By hypothesis, V(θ) is an #0(|/| = unbounded operator with relative bound

zero. By the quadratic estimates, Proposition II.4 of [16], it is automatically also
H0(\f\9 θ, ̂ -bounded with relative bound zero. Moreover, it is easy to see that
H(\f\9θ,η) has numerical range in a half-plane. Thus the claimed results follow
from standard ones in the perturbation theory of semigroups; see e.g. [22].

(d) This follows from the definition of type (A) family [18, 23] and the fact that
in the region in question, H and H0 are closed on the fixed domain, 3). Π



Dilation Analyticity in Constant Electric Field. II 187

Definition. We say a system of charges and masses (q^m^), ...,(qN+l,mN+ί) is
ineffective if and only if there is a non-trivial decomposition D = {C15 ...,Q} of

so that QJMa = Q/M for all α where QΆ= £ .̂ Mα = £ m,, If

= oo, we say the set is ineffective if and only if there is a non-trivial
decomposition {C1? ...,CJ of (1, . . . ,JV+1} with JV+1 in C t such that βα = 0 for
α> 1. If the system is not ineffective, we call it effective.

Note that a system with one positive and the remaining charges strictly
negative with the same charge to mass ratio is always effective even when the
positive charge has infinite mass. Notice also that since qN + ί drops out if
mN + i = co, we can take a set of fixed charges and m l 5 ...5wN and take mN + 1 to
infinity so that the limit is ineffective even though the approximates are effective.
Given the theorem below this says there is an instability of essential spectrum as
mN+1 goes to infinity which is associated to the instability of this spectrum as
l/l-o.
Theorem 2.3. Let (θ, \f\elη) lie in the region & and suppose that the masses and
charges are effective. Then H(\f\, θ, η) has purely discrete spectrum.

Proof. We describe the details for mN+ 1 φ oo. The modifications if mN+ 1 = oo are
easy. For a given decomposition D of {1, . . ., N + 1}, we define HD in the usual way
by dropping all Vtj with i and j in distinct clusters. As usual, there is a

decomposition §= (X)ί)Cα(8>§£)
α

HD= Σ [H(Ca)®/] + [^(x)/], (2.7)
C«eD

where §Cα are functions of the internal coordinates of Cα and ξ>D are functions of
differences of center of masses of clusters. In (2.7) the symbol [yl®/] indicates the
tensor product of operators A on one of the factors and / on all other factors. Each
factor is different : §α for H(CΛ) and §D for hD.

Since LD, L(Cα), £D all generate exponentially bounded semigroups, it is easy to
see that

Moreover, hD is just what results from removal of the center of mass from

By Proposition 2.1, and the effectiveness hypothesis, hD still has a non-zero electric
field term and so by Proposition II.2 of [16].

for C>0. Since ||β~ίL(Cα)|| ^ββ(α)ί for some β(α), we see that

$\\ezte-tLD\\dt<ao

for all z in (C. Thus, (HD — z)"1 is an entire function.
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By Theorem 2.2, one can go to a region in the complex plane where the
perturbation series in V(θ) for H converges and make the necessary rearrange-
ments to obtain Weinberg-van Winter equations for H, i.e.,

Since D(z\ I(z) are made up of (HD — z)~ l5s, they are entire functions. Moreover, by
the quadratic estimates (Proposition II.4 of [16]), and the hypothesis on Vi , I(z) is
compact in the region of perturbation series convergence and so in the whole
complex plane. Thus, in the usual way, (H — z)~l is meromorphic with finite rank
residues, i.e., H has purely discrete spectrum. Π

For ineffective charges and masses, the essential spectrum may not be empty
but one can still identify it. The following theorem is proved in Appendix B :

Theorem 2.4. Suppose ^ = 0, 0<Imθ<Min(φ,π/3), |/|>0 and suppose the charges
and masses are ineffective. Then

where the λa are discrete eigenvalues 0/H(Cα), μ^O and we run only through those
decompositions D = {CΆ} with QJMΆ =

By an argument identical to that given in the Introduction for the one-body
case we have

Theorem 2.5. Fix η = Q and |/|. Then for Imz>0

s-lίm (H(\f\,θ)-zΓί = (H(\f\}-zΓ1.
1m (74, U, (7 — *• U

Remark. One can also obtain a result of this genre on the limit of the resolvent as
I/I JO but as we will prove a stronger result in the next section we don't write that
down here.

In the usual way one obtains :

Corollary 2.6. For η = Q, 0<Imθ<Min(φ,π/3), we have σ(#(|/|,θ))g{z:Imz^O}
and the point spectrum of H(\f\, θ = 0) away from σess(H(\f\, 0))nIR is identical to

3. A Semigroup Weinberg-van Winter Analysis

In this section we will find it convenient to be more systematic in our notation. We
denote the operator appearing in (2.3) by H0(/, θ) where f = eιη\f\. An operator
without a tilde as usual has its center of mass removed. We write

) = H0(f,θ)+V(θ)

= H(Q,Θ)

= infσ(H(0))
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and introduce the sets

Note that if |Imθ| <π/2, K(θ) contains the convex hull of the spectrum of H(θ).
The conditions 0 < /? + 3 Imθ < π, |Imθ| < φ are natural because if we also demand
I/I >0(/ = |/|eίfί) then H0(/, θ) satisfies the quadratic estimate of [16] and H(f, θ) is
analytic. The additional condition Q^η + Imθ^π guarantees that K(η, θ) is a half-
plane. Thus if (f/,0)e^0 with Q<η + Imθ<π

K(η,θ) = {Σ + xeθJη + μ:xε]&, μ^O} (3.1)

while with η + Imθ = 0 (respectively π), K(η, θ) is the lower (respectively upper) half-
plane.

Also note that iί(η9θ)e&>0 then |Imθ|<π/2.
Our goal in this section is to prove the following :

Theorem 3.1. Fix a compact subset 5̂  of£f0n{(η, θ):Q<η + Imθ<π}. Then for any
ε x >0 there is an /ει >0 and a C < oo so that

\\(H(f,θ)-zΓl\\^Ceί

so long as 0<|/|</ει, (η, 0)e5^ and

RQ[ie-iη-θ(z-Σ + 8j]^0. (3.2)

Theorem 3.1 follows from

Theorem 3.2. Fix a compact subset £f of^0. Then for any ε > 0 there is anFε>0 and
a Cε<oo so that ifO<\f\<F& (

-W *-*, (3.3)

where Σ(η,θ)

Proof of Theorem 3.1. Given ε1>0 and 5 ,̂ as in Theorem 3.1, choose
Reθ :(η9θ)eίel}. Then if z satisfies (3.2) and (η,

Thus for (η9θ)e^ (we choose £f = &Ί) and 0<|/|<Fε

<C \ e~ίR
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Theorem 3.1 which is needed for subsystem Hamiltonians in the next section,
says essentially that as long as we take an extra ε width and |/| small, we can
control the norm of the resolvent outside the region of sums of the form μ + λ with
μ in the convex hull of σ(H(ΘJ) and λeσ(eiηeθx). It is thus a replacement for
numerical range arguments of [16] which are possible when JV=1.

Before beginning the proof of Theorem 3.2 we will need some further notation.
Since we will be taking |/|->0 in the operator L(f,θ) we introduce

By convention L(0, Θ) = L (η, θ). In addition we will need

Wtj(oC) = multiplication by exp(α j

We begin with two technical lemmas :

Lemma 3.3. Suppose & is a compact subset 0/{(|/|, η, θ):Q<3Imθ + η<π, \lmθ\
<φ] and J is a subset of the pairs {(iJ):l^i<j^N-\-l}. Define for α f j e[— 1, 1],

W(a) = [] wij(<*ij) and L(f> θ> <*) = W(a) L(/, Θ)W( - α) with domain C^(Rv]v). Then
(ίJ)eJ

there is an £>0 so that for all (|/|, θ,η)e<9* and all aije(— 1, 1)
(i) L(f9 θ, α) is dosable. Denote its closure by L(f, θ, α).

(ii) L(/, Θ, α) H- E is maximal accretive.
(iii) Ifφe@(W(-<*)\ e'tL(f'θ^φe^(W(-cή) and

^)φ = W(-^}e~tL(f^}φ (3.4)

(iv) \\HQe-tL(f>θ^\\^CΓletE.

Lemma 3.4. Suppose BeC™. Then as <5J,0

uniformly on compacts of {θ : |Imθ| < φ}.

We leave the proof of Lemma 3.4 to the reader.

Proof of Lemma 3.3. We first show that under the stated conditions, E can be
chosen so that L(/5 θ, α) + E has numerical range in the right half-plane : First note

where

Thus
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where

We have

W(*) (H0 + V(θ)e2θ) W(- α) - H0 + V(θ)e2θ + G(α).

Because of the compactness and analyticity of Vij(θ)( — A + 1)"1, we have

lim \\V(Θ) (HQ + λ)~1\\=0 uniformly for 0 in compacts of {0:|Im0|<ψ}. In
λ~* oo

addition, lim || G(α) (H0 + λ)~11| = 0 uniformly for α in compact sets. Thus there

is a A 0 >0 such that for θeD = {0:(|/|, η, θ)ε&} and α.7.e[-l,l] all (iJ)eJ

\Im(φ, W(a) (Ho + V(θ)e2θ + A0) W(- α)φ)|

^ tan y Re(φ, W(u) (H0 + V(θ)e2θ + A0) W( - α)</>),

where y = Inf{^-f 3Im0,π — (η-\-3lmθ):(\f\,η,θ)e^}. In fact, if

c(λ} =

we need only take λ0 so that c(λ0)/l-c(λ0)^tany. Thus W(a) (H0 + V(θ)e2θ

+ λ0)W( — α) has numerical range in a sector between the angles ±y. Now

, 0, α) - ie~ 3θe~ iηW(a) (H0 + V(θ)e2θ) W(-<*) + ί\f\X

N+l \

3iri-QR so that

has numerical range in the right half-plane if γ^3Imθ + η ̂ π — γ. If we take
E = sup{Re(λ0ίe-3θe-ίη):(\flθ,η)e#} then L(/, 0, α) + E has numerical range
in the right half-plane for all (\f\,η,θ)e&. Let

From [16], C^(IRv]V) is a core for L0(/0). Consider the operator

Λf (α, A) - (L(f, 0, α) - L0(/? 0)) (L0(f, θ) + λ)~ί

with domain (L0(/, 0) + A)CJ(IRV]V). By the quadratic estimate of [16], M extends to
a bounded analytic operator valued function of α which approaches zero in norm
as Λ,->oo. This has the consequence that Z(/0,α) + £ is maximal accretive with
domain equal to 2(LQ(f9 0)) and that

is analytic in α for Reαί7 e(— 1, 1) and λ>E. [Here we use the fact that W(ot) is
unitary for α imaginary.]
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We have proved (i) and (ii). To show (Hi), first note that for fixed ί, e~tL(f'Θ^} is
analytic in α for Reα f</e(- 1, 1) so that for φ, φeC^(lRvN) both sides of

(W-1(a)ψ,e-tL(f>θ>«}φ) = (ψ,e-tL(f>θ)W-1(u)φ) (3.5)

are analytic in α, equal for α imaginary and thus equal for ocije(— 1, 1). By a
limiting argument (3.5) holds for φe@(W(-<*)) and thus e~ί£(/'θ'α)φe^(J^(-α))
and (3.4) holds.

To prove (iv) we consider the operator

Γ(£) = ̂ (ί)e~ί(£(/'M) + A ), (3.6)

where <%(t) = Gxp(i\f\Xt). If φeC%QSBivN) we can differentiate x(t) = Γ(t)φ to find the
evolution equation

(3.7)

with

Λ(t) = W(t)[ie-3θe-ίηW(a)(H0 + e2θV(θ))W(-<*) + λ^(-t). (3.8)

Now A(t) — 1 is sectorial for large enough λ > 0, with numerical range between
π/2 — δ and — π/2 + δ uniformly for (|/|, η,θ)e& and αfj.e ( — 1, 1) if λ is chosen large
enough for some δ > 0. In addition estimates of the form

\\A(t)Λ(sΓ1\\^cίι Me [0,1]

at

are easy to prove if λ is large enough with cί independent of (|/|, η, θ)e£f ί, se [0,1],
z in the right half-plane.

Under these conditions Tanabe [31] and Sobolevski [29] have investigated the
solutions to (3.7). Tanabe's method is outlined in Yosida [36] where it is shown
that

c2Γ*'9 ίe[0,l], (3.9)

where the constant c2 depends only on cί and the angle δ. Since we have

uniformly in the relevant region we find

IIHo^^ ' '^^HIIffo^
^c3c2ί~

1; ίe[0,l].

This demonstrates (iv). Π

We now have the bounds necessary for a discussion of the terms which will
appear in our Weinberg-van Winter semigroup expansion.

Lemma 3.5. Suppose & is as in Lemma 3.3. Let S = (DN+i, .. ,£)fe) be a string of
cluster decompositions (where Df has / clusters and D^+ 1 refines D,). Denote by LD .
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the operator L(f9 θ, α) with all interactions V^m(θ) between different clusters of Dj

removed. Let Pj(t) = exp(-tLDj) and suppose \\Pj(t)\\^Cjeyt,for all (\f\,η9θ)e&.

Suppose βj9 j — /c, ...,JV are multiplication operators with ||j8J.(ίf0 + 1)"1!!
= y.<co. Then for eachε>0 there is a Cε< oo independent ofβj so that for all ί >0

/ N + l \ - ( l - l / n k ) Γ/N + 1

*C. Πy, Πί, exp Σ

for all (\f\9η9θ)e&. Here nk = N + 2-k.

Proof. We write the operator under consideration as

o)1

+1)/nk}(l+H0)
(N-k^

and estimate the result as a product of norms.
By interpolation ||(1 +H0)"xjβ/l +H0)

1~X\\ ^y. for xe[0, l]LIn addition since
Lemma 3.3 holds for the adjoint of LD(/,0,α) as well as for LD(/,θ,α) we have
jKH-HoJP/OH + IIP/Oα+HoίH^cr 1 for ίe[0,l], and thus again by
interpolation

if xe[0,l] andO^ίgl . Thus

^x'^\\^^^

If ί ̂  1 we can estimate for the same x

and thus for any ε > 0 the latter norm is bounded by

for some Jε. Combining the above estimates results in (3.10). Π
In our semigroup expansion we will have to deal with integrals of operators

like the one we estimated in Lemma 3.5. The next lemma controls these integrals.

Lemma 3.6. Under the hypotheses of Lemma 3.5. let

F(s) = J ΛN+ ! . . .dtkδ(tk + . . . + ίN+ ! - s)PN+ 1(ίN+ JβN. . .βkPk(tk] ,

where s > 0 and the integral is a strong integral. Then for each ε > 0 there is a C'ε
independent of β. so that

\\F(s)\\^C'(γ[ y7.)exp[5(y + ε)] (3.11)
v/=* /

and z/(/>eC^(lRv]v), F(s)φ is Holder continuous uniformly on compacts o/(0, T] for
any T>0.
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Proof. From Lemma 3.5

\ j = f c

The change of variable t — λjS gives

/N+l \

tλ

Δ "

/N+l \ - ( l - l / « k )

-i)( Π λj)
\j = k I

with c<oo. Thus (3.11) follows with C'ε = cCε.
To prove the Holder continuity we write

F(s + λ)φ= j dtN+1...dtk+1PN+1(tN+1)βN...

dtN+ί...dtk+ίPN+1i(tN+l)...

+ F(s)(Pk(λ)-

Thus using (3.11) and Lemma 3.5

N+l

• Π tj
= k+l

for 56(0,7^.
The first term can be estimated using Holder's inequality by the expression

'N+l \-Λ\lfp

I''}
where u = p(l — l/nk)<l, and p~l +q~l = l. The above expression is bounded by

const/I1/^ + λΓm

for some m. This gives the required Holder continuity. Π
We can now prove the semigroup analog of the Weinberg-van Winter

expansion. This expansion was discussed by Weinberg in [35] where the equation
for resolvents is derived.
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Proposition 3.7. Let PD(t) = e~tLD(f'θ) where D is a cluster decomposition and
suppose 0<3Imθ + ̂ <π and \Imθ\<φ. Then for f>0

= (DN+ί,...,Dk)

where βs^ = ie~θe~iηΣfVij(θ) and Σf is the sum over all pairs (ij) with i<j which
connect the two clusters in D^+ί which are joined together in D^.

Remark. If we write P(ή = e~tL(f>θ} and D(ί) = [sum of terms on RHS of (3.12) with
S disconnected], we can rewrite (3.12)

P(t) = D(t) + ]l(t-s)P(s)ds (3.12a)
o

or
P = D + I*P,

where

/(S)= Σ (-ιy-t+ιidtN+1...dt2
S = (DN+ί,...,Dι)

<5(ί / v + 1+... + ί2-s)PDN+ι(ίw+1)^...^.

In some applications it may be helpful to invert (3.12a) and use

P = (l-/*)-1D

but we will deal directly with the expansion (3.12).

Proof. For — Rez sufficiently large we have the usual Weinberg-van Winter
expansion

(z-L(f,θ)Γl= Σ (z-LDN+ιΓ^s

N(z-LD!iΓ
lβs

N^ βl(z~LDkΓ
l.

S = (DN+1,...,Dk)

Denoting by G(t) the difference between the left and right sides of (3.12) we have by

(3.13)

o

for —Rez sufficiently large and hence (φ, G(ί)φ) = 0 for almost all f>0. By the
continuity result of Lemma 3.6, G(t) = 0 for all £>0. Π

We now begin to consider /->0. We denote LD(0,Θ) by L'D(η,θ).

Lemma 3.8. Suppose <?2 is a compact subset of {(η, θ):Q<3Imθ + η<π, \lmθ\ < φ}.
Suppose S — (DN+1, ...,D1), i.e., S is connected. Then as |/|-»0

f N + l \
ί Π dtj }δ(t1 + ... + tN+1-t)e-tN^LD»^(f>0}βs

N...βs

1e-tιL^f>v
\ j = ι /

O^^^^^^X... '̂̂ '̂̂  (3.14)
\ j = ι

uniformly for ίe(0, T] and (η,θ)e^2 for any T>0.
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Proof. Let F(t, /, θ) be the operator on the left hand side of (3.14) and F(£, η, θ) the
operator on the right. Lemmas 3.4 and 3.6 show that if all potentials V^m(θ)
appearing in each βj are multiplied by W^m( — δ) to give βs

jfδ, the resulting operators
Fδ(t, /, θ) and Fδ(t, η, θ) converge in norm to F(ί, /, θ) and F(ί, η, θ) as δ J,0 uniformly
in the region 0 < |/| ^ 1, 0 < ί ̂  T> (η, θ)e ̂ 2. [Note that by Lemma 3.3, LDj(f, Θ) + E
is accretive for some E independent of (η, Θ)e<^2.~] Hence we need only show that
for a fixed δ > 0

F ίί, i7,θ)| |=0

uniformly in (t,η,θ) for 0<t^T, (η,θ)e^2. We first write each βs

j>δ as a sum of
potentials (which include decreasing exponentials factors) and consider operators
Gδ(t, /, θ) and Gδ(t, η, θ) resulting from keeping one potential from each βs

j>δ. Since S
is connected, the product of potentials in Gδ(t, /, θ) contains a factor [~] 1̂ ( — (5)

(U)eJ

where J is such that c £ [rj ̂  £ |r0! We change e~
tjLD'(f'θ) to e~

tjL'D>(η'θ) one at
(i,j)eJ i > j

a time using the du Hamel formula

e-^W/.fl = e-'^b/iί,e^^^

where X = β (Σ^^ - QR). We thus write Gδ(t, /, θ) - G'δ(t, η, θ) as - i\f\ times a sum
of terms of the form

( N+2 \ / N + 2

ΠΛ>ί- Σ
j=ι / \ j=ι

where one of the α^ 's is X and the rest are of the form ίe~ιηe~θWij{ — δ)Vij(θ) for
some (ij), while PJ(t) = e-tLl>(f e) or e-

tL'D(η>θ) for some D.
We need only show that a term like (3.15) is uniformly bounded as |/|->Ό and

(η,θ) and t vary over ^2 and (0, T] respectively. We use Lemma 3.3 to move all

W^.'s past operators Pk(tk) to the point where X occurs. Since X Y[ W{j( — S)\ < oo
(i,7)eJ 1

the expression (3.15) is uniformly bounded using Lemma 3.6. Π

Lemma 3.9. Let y and Σ(η, θ) be as in Theorem 3.2. Then given any ε>0 there is a
Cε<oo so that if(η,θ)ey

-t(Σ{η θ)-ε\ (3.16)

Proof. As in the proof of Lemma 3.3 we can choose £>0 so that if (η, Θ)E^ the
numerical range of L'D(η,θ) + E lies in the sector {z:|argz|<π/2 — y/2} where
(η,θ)e^ implies y^ + 3Imθ^π-y for some y>0. Thus for O^ί^l, \\e~tL'Ώ(η^\\
^eE, and we need only prove (3.16) for t ̂  1. In this case we write

where Γ is the contour shown in Fig. 1. Since σ(HD(θ))£K(θ) for any cluster
decomposition D and inϊ{RQz:zeίe~θe~iηK(θ)} = Σ(η,θ\ Γ surrounds the spec-
trum of L'D(η, θ).
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Fig. 1. The contour Γ

The resolvent (z — L'D(η,θ)) l is uniformly bounded for zeΓ1uΓ3 and (η,
by sectoriality and this gives the bound

f e~zt(z-L'D(η,θ)Γldz ^const J e~Rezt\dz\^ const. (3.17)
ιuΓ3 ΓιuΓ 3

It is easy to show that if C is a compact subset of {(z, θ) :ze(C, |Imθ| < φ] then for
any (5>0

?θ)eC}<α). (3.18)

Here d(z, A) is the distance from z to the set A. Since for ze Γ2 d(z, σ(L'D(η, θ))) ^ ε for
all (η,θ)e<y, we have

Thus

< const e (3.19)

and (3.16) follows from (3.17) and (3.19) since Σ(η,θ)^Q. Π

Proof of Theorem 3.2. Our proof proceeds by induction on |C|, the number of
particles in a cluster C. Let Lc(/, θ) denote the operator

ie-ί"e-θ/Σ(-Δi/2mί)e-2β+ q Λ

i,jeC

and Lc(f,0) the same operator with center of mass removed. e~
tLC(f^ is an

operator on L2(Rv(|c|"1}). Similarly Hc(f, θ} = - ieίηeθLc(f, θ). Let
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If |C| = 1, the result is trivial. Now assume the result for \C\^N. We will prove it for
|C|=JV + 1. Thus suppose that if 0<|/|<Fε, (η9θ)e&

|| etLC(f> 0) || ̂  c ! (ε) exp(tε/4(JV + 1)) exp( - tΣc(η9 θ)) .

Then if D = {C1? . . ., Ck} with fc > 1 we have

\\e- tLo(f' θ}\\^ c2(ε) exp(ίε/4) exp( - tΣ(η, θ))

because the sum of the ΣCj's is at least Σ. From Lemma 3.6 we thus have for each
disconnected string S = (DN+1, ...,Dk)

Λ Γ + l \ Λ Γ + 1
£ t. γι dt.

7 = Λ / J = Λ

g c3(ε) exp( - t(Σ(η, θ) - ε/2)) . (3.20)

We now write the Weinberg-van Winter expansion (3.12) as the sum of two
terms

where F1 is the sum over all disconnected strings and F2 over connected strings.
Similarly

Writing e~w^ = (Ft(ί, /, θ) + F2(t, η, θ)) + (F2(ί, /, θ) - F2(ί, f/, θ)) we bound
Fi(t,f,θ) using (3.20) and F2 (t,η,θ) using Lemmas 3.9 and 3.6 to get

l|e-ίL(/'θ)||^c^ (3.21)

for all ί^O and fa,θ)e^. Now let

y = Max{l,c4(ε)}

Γ=(41og(2y))/ε.

Lemma 3.8 implies that we can choose Fε>0 with Fε^Fε so that if 0<|/|<Fε,
and ίe(0,Γ] then

Under these conditions (3.21) then gives

|| e - tL(f, θ) || ̂  2γe - t[Σ(η' θ) ~ε/2]. (3.22)

Setting \\e~tL(f>θ}\\ =expρ(ί), (3.22) is equivalent to

so that for ίe[T/25T]

and thus by the choice of T

t^ε-Σ(η,θ); te[T/2,T]. (3.23)
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n

Using the inequality \\e~
(ti + ~ +tn)L(f'θ)\\ = ]~J \\e~tjL(f>θ)\\ we find

j=ι
n

ρ(tι +... + g/(ί! +... + g ̂  X (QttjVtj) (tj/t, +... + g.

Applying (3.23) for /^[T/2, T] gives

£?(ί)Λ = ε ~ ̂ "(^5 θ) (3.24)

for ίe —, nT for all π and thus we get (3.24) for all t = T/2. Using the uniform

bound \\e~tL(f'θ}\\ =etE from Lemma 3.3 for t = T/2 gives

for all ί > 0, all |/| with 0 < | f | < Fε, and all (η, θ) e ̂ . Π

4. Stability, Analyticity, and Borel Summability of Resonances

In this section, we begin by combining the estimates of Theorem 3.1 with the
stability method of Avron et al. [4] to obtain stability of eigenvalues of ί/(|/| =0)
turning into resonances of H(\f\, θ, η). By using the fact that we can allow η φ 0 and
the freedom to vary θ, we will obtain analyticity of the resonance energies for / in a
fairly large region near / = 0. Even in the two body case, these results are new,
except that for the special case V = r~1, Graffi and Grecchi [13] obtained the same
result that we do with rather different methods. Indeed, their work motivated our
discussion in this section. We finally turn to the consequences of our analyticity
results for Borel summability recovering the result of Graffi-Grecchi for hydrogen
[13] and proving new results for multielectron atoms. In the non-degenerate case
or the case where degenercy is broken to first order, we obtain formulas linking the
asymptotics of the Rayleigh-Schrδdinger coefficients as n->oo to the asymptotics
of the widths as /|0.

Definition. &0 = {(η,θ)\θ = iγ, yelR, \γ\<φ',η,γ obey (4.1-2)} where

, (4.1)

(4.2)

The conditions (4.1) and (4.2) are natural for the following reasons: (4.1)
implies that we are in a region where for |/| >0 H(\f\9 θ, η) is analytic. (4.2) implies
that a neighborhood of any real E0 < Σ1 = mϊσess(H(\f\ = 9 = 0} will lie in the region
of z obeying (3.2) for δ sufficiently small and H an HD. Given these facts and
Theorem 3.1 the following result is very easy; its proof is just the same as that of
[16] for the case η = Q, N = l and is based on [4]. For this reason, we only sketch
the details.

Theorem 4.1. Let E0 be a discrete eigenvalue ofH(\f\ =0, θ = 0) of multiplicity n. Fix
^1 compact in <%0. Then, there exists ε and F0 >0 so that for (η, θ)e^1 and \f\<F0,
H(\f\,θ,η) has at most n spectral points within the disk {E\ \E — E0\ — ε} = C, each is



200 I. W. Herbst and B. Simon

an eigenvalue of finite multiplicity and the sum of their multiplicities is exactly n. As
1/110 each of these eigenvalues converges to E0 uniformly for (

Proof Let R ( \ f \ , θ , η ; z ) = (H(\f\9θ,η)-zΓ1 We rearrange the Weinberg-van
Winter equation used in Sect. 2, to read

where D, / depend on \f\,θ,η and z. This version of the Weinberg-van Winter
equation follows from the one in Sect. 2 for R(\f\,θ, —ηiz) by taking adjoints.
D and / above then have a slightly different meaning. Since £0<Σ1? we can find
ε and Fx so that (i) E0 is the only spectral point of H(\f\ = 0 = 0) within the disk C.
(ii) For any non-trivial D, (RD(\f\ , 0, η) — z) ~ l is uniformly bounded for ze C, (77, 0)e ̂
and \f\<F1. To obtain (ii), we use Theorem 3.1 and Σί ^mϊspGc(HD(\f\ = θ = Q)).
(iii) E0 is the only point zeC where 1— /(|/|=0,0) is not invertible, for all θ
with (η,θ)e^iί for some η.

By (ii), we find that D and / are uniformly bounded in the above region. Thus,
since / converges in norm to /(|/| — 0) as |/||0 in the region where the perturbation
series converges uniformly for (η,θ)e^ί (each term converges), / converges in
norm uniformly for zeC, (η, θ)e^1 by the Vitali theorem. It follows that for some
F0, (I-/) is invertible for |/|<F0, zedC and (^,0)6^. Moreover,

converges in norm since / is compact and norm convergent and D is strongly

convergent. Since <f RdE/2πi is a spectral projection and f DdE/2πi = 0 by
dC dC

analyticity, we get norm convergence of spectral projections. Since the disk C can
be shrunk this yields stability. Π

Definition. A discrete eigenvalue E of H(| f | = 0 = 0) with spectral projection P will
be called normal if there exist mutually orthogonal projections Q1? ...,2^ each

commuting with H(|/| = θ = 0),X = έ £ g/r^-R) \X = e- £ 4. r. if wιN + 1 = ooj

/ ^ \
and {l/(0)|0 real} so that (i) RanPcRanMΓρΛ (ii) For each j, PQjXPQj is an

operator on the finite dimensional subspace Ran(Pβj) with distinct eigenvalues.
In practice, the Q;.'s are projections onto vectors with certain quantum

numbers under a symmetry commuting with dilations and leaving H and X fixed,
usually rotations of some kind. Condition (ii) says that on each symmetry
subspace, any degeneracy is removed in first order. This removal of degeneracy
will prevent non-analyticities possible when one has a degenerate eigenvalue of a
non-self adjoint operator like JΪ(0ΦO).

Examples. 1. If E is non-degenerate, i.e., dimP = 1, it is automatically normal (take
f=l andβ = l).

2. Suppose that v = 3 and all potentials are rotation invariant and that the
rotation group acts irreducibly on Ran P. Let Q be the projections on the
eigenvectors of e - L. Then each PQ is rank 1 so (ii) is automatic. E is thus normal.
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3. Let H(\f\ = θ = Q)=-Δ-l/r. Let E= - l/4N2(N=l, 2,...). Then E has
degeneracy N2. By using "parabolic quantum numbers", see [15], one can label
these N2 states with quantum numbers m = 0, ±1, ±2, ... and fc, q — 1, 2, . . . so that
m + k + q— 1=JV (all values allowed), m is just the eigenvalue of Lz so after
restricting to suitable symmetry subspaces we have labels fc=l,2, ...,N — m, and
q = N — m — k—l. The eigenvalues of Pβm x Pβm are exactly 3(/c — q)N (Lemma 6.4
of [15]) which are distinct for the different values of fc on a fixed m subspace. Thus
all these eigenvalues are normal.

Theorem 4.2. Let H0 = H(\f\ = θ = 0) be an n-body Hamiltonίan with pair potentials
in C^ and let E0 be a normal discrete eigenvalue ofH0 with multiplicity f . Then there
exist for any δ >0, an Rδ >0 and ^functions Ex(/), . . ., £//) analytic in {f\ \f\ < Rδ

- min(</>, f ) -h δ < arg/ < π + min(</>, ξ) - δ)} = Kδ so that
(i) For θ small with Im0>0 and \f\ small, the E (|/|) are precisely the

eigenvalues of H(\f\9θ9η = Q) near E0.
(ii) If each two body potential is invariant under rt-> — rί5 then for each], there is

a k (not necessarily distinct from j) so that for \f\ real and positive

£/-l/D=WI5 (4-3)
(iii) In the region Kδ, each Ek(f) has a (Rayleigh-Schrδdinger) perturbation

series asymptotic to all orders.

Remarks. 1. Even if E0 is not normal, it should be possible to prove that (i), (ii)
hold.

2. In the case where all E0 eigenvectors have the same parity which will hold in
most atoms, j = k in (4.3). Of course, in hydrogen, where the E's are labelled by

quantum numbers m, fc, q as above, £m,M(H/l) = £«,«,*( + !/!)•
3. In an appendix, we prove a detailed bound on the errors in the Rayleigh-

Schrδdinger series, viz:

)- Σ (4.4)

Proof. Let H(\f\9 θ, η) f Ranβ^. = Hβf\9 θ, η) and suppose the eigenvalue E0 of Hβf\
= θ = 0) has multiplicity m . Then by the usual dilation analytic machinery for
/ = 0, Hj(\f\ = 09θ) has E0 as a semisimple eigenvalue of multiplicity mr By our
stability result, Theorem 4.1, Hβfl θ, η) has exactly m eigenvalues (total algebraic
multiplicity) near E0 for small |/| and they all converge to E0 as |/||0. By a
theorem of Kato [18, p. 443] these eigenvalues Ejk(f9θ) (f = \f\eiη) can be written

fc-l,...,m , (4.5)

where the μjk are the eigenvalues of QjP(θ}XeθP(θ)Qj Γ Ran Qj where

dz(z-H(\f\=^θ}Γ1

and ε is sufficiently small. By the usual dilation analyticity arguments the μjk are
the eigenvalues of QjPXPQj f Ran Qj(P = P(0)) and thus by assumption, they are
distinct. An analysis of Kato's argument [18, p. 443] combined with our stability
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γ a x i s

η a x i s

Fig. 2. The region ̂ 0

argument shows that (4.5) holds uniformly in any region of the form

<π-δ,\lmθ\<φ-δ},

where δ>0 is arbitrary and F§ is suitably chosen. Because of (4.5) and the fact that
the μjk9 k= 1, ...,m;. are distinct we can write the spectral projection for eigenvalue

where Γjk is a circle surrounding Ejk(f9 θ) and no other [of radius = 0(|/|)]. Pjk(f, θ)
is thus analytic in regions of the form K$ as is

Ejk(f,θ)Pjk(f,θ) = (2πίΓl j z(z-HJ\f\9θ9*rgf)Γldz
Γjk

and thus Ejk(f9 θ) shares this analyticity property. By the usual arguments Ejk(f9 θ)

is independent of θ and thus relabelling we have / = £ mj functions, Et(f)9 analytic
j

{/!(/, θ)eK$}. In case φ>f, the allowed region ^0 is shown in Fig. 2.n
θ,\lmθ\<φ

The extreme values of η occur at the points A = (γ=%9 η= — ξ) and B = (y= — f,

ί?=¥)
If (/> <f, the given region must be sliced with the strip \γ\<φ. The extremes lie

on the lines η + y = 0 and η + y = π and on the lines y=+φ, respectively —φ.
In either event, we obtain analyticity in region Kδ by choosing δ suitably, (iii)
follows by the use of the standard theory of stable perturbations once we know
that degeneracy is removed at first order.

To prove (ii), let V be the map (Vf) (τ^ = f ( — τ^ and note that
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where Άf = (Af) with / the complex conjugate of/ Thus for f >0 and small, the
set {E^(if\ . . . , E t ( i f ) } is invariant under complex conjugation. Hence for each j
there is a fc so that Ej( — f ) — Ek(f) holds on a determining set (contained in the
positive imaginary axis) and thus for all / in (J Kδ. In particular we obtain
(4.3). D

Given the above analyticity result, the bound (4.4) and Watson's theorem [34,
14] in its sharpest form [20, 30] we obtain :

Theorem 4.3. Let Ek(j) be one of the eigenvalues given by Theorem 4.2. and let
CO

Σ a

nf
n be its formal asymptotic series. Then for suitable #>0, the Borel transform

n = 0

B(z)= J anz"ln\
n = 0

defines an analytic function in the region

In particular, if φ^, B(z) is analytic in the union of a half-plane and a semicircle.
Moreover, given ω = elλ with \λ\<π/2 and f with — Min(φ,π/2)<arg/<π
+ Min(φ, π/2) then ι/|arg/ + /ί — π/2|<min(φ,π/2) and \f\ is sufficiently small

00

Ek(f) = ω f £Γ tωB(tfω)dt . (4.6)
o

In particular if φ>π/2, and Q<λ<π/2 then (4.6) holds for all />0 which are
sufficiently small.

Remark. Since B(z) is real for z real, it is also automatically analytic in

{z| — π/2 — min((/>, π/2) < argz < — π/2 + min(φ, π/2)} .

In particular, if </> ^π/2, B will be analytic in the plane with two "cuts" (JR, oo) and
(— oo, — R) removed.

Finally, we want to note a relation between the an and the width Γk(f) defined
by

Γt(/)=-2Im£k(/)

for/>0:

Theorem 4.4. Suppose all two body potentials satisfy Vij(r)=Vij(—r). Let Ek(f) be
oo

one of the eigenvalues given by Theorem 4.2 and let Σ a

nf
n be its formal asymptotic

n = Q

series. Let E. be the level given by (4.3). Then for all sufficiently small R:

). (4.7)

Remarks. 1. I f j = fc, then an = Q for n odd.
2. For the case of hydrogen, one can rigorously compute Γ asymptotically for

small / and so, using (4.6), the asymptotics of an for all levels; see [15].



204 I. W. Herbst and B. Simon

Proof. For n even, we write a Cauchy integral :

c

where C is the contour shown in Fig. 3. Taking the real part of both sides and

c2

Cι

Fig. 3

expanding (μ2 + λ2) ~ 1 = λ ' 2 + (iμ)2λ~ 4 + (iμ)4λ ~ 6 + . . . we see that

-R

Since 2lmEk(λ)= -Γk(λ) for A>0 and 2ImEk(-λ) = +Γj(λ) for A>0, we obtain
(4.6) for n even.

For odd n, we proceed in an identical way beginning with

Eh(iμ) = (2πί) ~ 1 j (μ2 + λ2) ' 1 (2ίμ)Ek(λ)dλ
c

and this time take imaginary parts of both sides. Π

5. Exponential Falloff of Resonances Wave Functions

In this section, we want to prove the following result :

Theorem 5.1. Let ψ be an eigenfunction of an H(\f\, θ, η) in a region where this H has
only discrete spectrum. Write ΓΞ(Γ I ? ...,rN) = (α, b) where a is the component of r
coupled to the electric field and b is the orthogonal component. Then for all ε
sufficiently small:

Theorem 5.1 is of obvious interest. The proof follows ideas of Combes and
Thomas [9] as extended by Simon [26].

Proof of Theorem 5.1. By Proposition II.4 of [16], we have the quadratic estimate

\\aφ\\2+\\Aφ\\2^Dt\\H0(\flθ,η)φ\\2+\\φ\\2l (5.1)

for suitable D where a is the component of r coupled to the field. Since V is — A-
bounded with relative bound zero, (5.1) implies that \\HQ(θ,η)φ\\2 is dominated by
a multiple of \\H(\f\,θ,η)φ\\2 + \\φ\\2 so (5.1) holds with H0(\f\,θ,η) replaced by
H(\f\,θ9η).

Now let F(r) = (a2 + 1)3/4 + (b2 + 1)1/2. Let l/(α) be multiplication by exp(iαF(r))
and let H(a) = UfyHUfa)'1. Since V and \f\a are multiplication operators
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Now d djF is bounded and dtF is bounded by a multiple of (1 + |α|)1/2. It follows
that the term in square brackets in (5.2) is H(0) bounded on account of the
extended version of (5.1). Since

llf&Φ \\2 = - <ffΦ, sfφy

we see that the last term in (5.2) is also H(0) bounded.
Thus H(a} extends from α real to an analytic family in |Imα| <<5 for some δ>Q.

It follows by the Combes-Thomas-O'Connor method [9, 21] that any discrete
eigenvector of H(0} is analytic for ί/(α), i.e., eδF(r}ιpeL2 for δ small. Π

In the next section we will need the following theorem but only in the two-body
case. We let f = £ fl^d/ with A = {α 7 } a constant positive definite matrix and X a

ίj
real linear function of reR".

Theorem 5.2. Suppose W is a complex valued function on IR" with t + Re W ̂  -const
and ψ is an eigenfunction of t +X + W in the sense that

(i) ψe®(t+X).
(ii) For each φeC^IR"), φ(t+X)ψ = φ(E- W)ψ.

and a ( d ) ( d X ) = y2>0. Then ϊ/

Proof. We use the identity

to write (for φ real)

(ψ, φ(t +X)φψ) = ±(φ2(t +X)ψ, ψ) + ±(ιp, φ2(t +X)ψ) + χflij<φ, 3^5^ )̂
ij

Using (ii) we have

(φ, 0(ί +X + Re(P^- E))φψ) = ̂  (φ, d.φdjφip)^
i,j

and thus ί + Re( W- E) ̂  - C gives

(ψ, φ(X - C)φιp) £ X (φ, dtφdjφψfaj .

Without loss of generality we can take C = 0 because we can translate X by C. We
write φ(r) = φ0(λr)g(X) with #EC°°(IR), Xg2, g' bounded and φ0eC^(IRn) with
Φo(0) = l and then take λ|0. We find

(5.3)

By a limiting argument, (5.3) is also valid if g' is piecewise continuous and bounded
and g2(X)X is bounded. We choose
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with

= exp( - f (α + ε) (x - £)3/2) Λ < x ,

where 0 < ε < y ~ i . Then if yα < 1

g(x)2x - y V (x)2 = (1 - ?2α2)x exp(f αx3/2) 1 ̂  x < #

>0 K^x.

Since the contribution to (5.3) in the region x>R is non-negative we have

(l-72α2) J M2Xexp(foX3/2)dr^y2 J |φ|V(X)2dr^C, (5.4)

where C can be taken independent of .R and α if α^y" 1. Taking .Rjoo in (5.4) gives
the desired result.

Remark. A similar technique for proving exponential L2 bounds was used in
[41] and forZ-0 by Lavine [42].

6. Non-Vanishing of the Width

In this section we will give a proof of the following result :

Theorem 6.1. Let W be real-valued and in C^ for some φ>π/3. Suppose in addition
that for each ε>0 and each bounded open subset B of {θ :\lmθ\ < φ — ε} there is a
splitting W(Θ)=W1(Θ)+W2(Θ) where

(i) Wi(θ) (|r| + 1) (- A + 1)~ 1 is compact and analytic in B.

(ii) sup| |W2(θ)| |<ε.
θeB

Let f > 0 and h0 = — A 4- fa(r) where α(r) is a component of r. Suppose that
h0 + W obeys a unique continuation principle. Then h0 + W has no negative
eigenvalues.

A result of this genre has already been obtained by Avron and Herbst [3]
using different methods. (In [3] the eigenvalue is not restricted to be negative.)
Here we will mimic an approach of Balslev [7] and Simon [25] and then explain
the difficulties in extending the proof to TV-body systems.

Proof of Theorem 6.1. We denote fe0(θ)= -Ae~2() + fa(r)ee, h(θ) = h0(θ)+W(θ). The
proof will be broken into several steps :

1. Resonance in |Imθ|<π/3. Let £ be a negative eigenvalue of h = h(θ = Q). For θ
real, let P(θ) be the spectral projection onto the eigenvectors oίh(θ) with eigenvalue
E. By Corollary 2.5 h(θ) has E as an eigenvalue for 0<|Imθ|<π/3. For θ in the
latter region define P(θ) (by a contour integral) as the associated spectral
projection. Clearly, for / and g dilation entire and 0<Imθ<π/3:

Urn iε( U(S)f, (E + iε-hΓ1 17(0)0) = bm iε(f, (E + ίε - h(θ)) ~ ί g )

= ( U(θ)f, P(0) C7(%) = (/, P(θ)g)
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and similarly for —π/3<Imθ^O so that (/,P(0)g) is analytic in |Im0|<π/3. Thus
by a Phragmen-Lindelδf argument [2, 8]. ||P(Θ)|| ̂  ||P(/π/6)|| for |Im0| <π/6 and so
by a density argument P(θ) is analytic in |Im0|<π/3.

2. Stability at θ= ±iπ/3. By sectoriality considerations, (hQ(θ) — z)"1 is uniformly
bounded for |z — E|<||E| and frgImθ^gπ/3 and is strongly continuous in the
whole strip including up to Imθ= ±π/3. We will show that

W(θ) (h0(θ) -zΓl ^-* W(iπβ) (h0(iπβ) - z)-1 (6.1)

as θ^ίπ/3 with Imθ<π/3, uniformly in z for |z — E|5Ξ|E|/4. Clearly we can replace
Wby a Wi with W^θ) (l + |r|) (-A + l)'1 analytic and compact in {θ:f <|Im0|
<π/3 + ε, |Re0| < 1} =B. The proof of (6.1) will be complete if we can show that for
θeB and |Im0|^π/3

where Kj is compact and analytic for θe B and |z — E| < |E|/2. For then certainly Kj

is norm convergent and by the compactness and analyticity of K2,K2(θ,z)
'(z—h0(θ))~'L is norm convergent with the right uniformity. To show (6.2) we use
the resolvent equation

and set

By arguments in [3], W(iπ/3)(h0(iπ/3) — z)"1 is compact so that σess(h(iπ/3J)
= {xeiπ/3 xeR}. Choose a circle C of the form (z:\z- E\=δ] with δ < \E\/4, so that
l-W(iπ/3) (z-/ι0(zπ/3))~1 is invertible on C. Then as in [4]

C

is norm continuous as θ-^iπ/3 and converges to

P(iπβ) = (2πi)~ ' J (z - M
c

Similarly

converges to

(2πz) " 1 J (z - E) (z - h(iπβ)) '1dz = (h(iπβ) - E) P(iπβ)
c

so that (ft(iπ/3)-£)P(iπ/3) = 0.



208 I. W. Herbst and B. Simon

Similarly we conclude

- s >P(-*π/3)

with (h(-ίπ/3)-£)P(-iπ/3) = 0.

3. Definition of η(θ). By O'Connor's lemma [23], since P(θ) is finite dimensional,
any ^eRanP(O) is such that U(θ)η = η(θ) has an analytic continuation to
|Imθ|<π/3 continuous up to the boundary and (h(θ) — E)η(θ) = 0 for

4. Falloffofη(±iπβ). By Theorem 5.2, exp(εα3

+

/2)ί/(±iπ/3)elA

5. Completion of the Argument. We mimic [7] or [25] and conclude by using
Carlson's theorem that for any geC^ with g = 0 for a(r)<A for some A>0 that

>;); Rez^O

is identically zero. In particular η(r) = 0 for α(r)>0 and thus by a unique
continuation argument, η = 0.

Since the Balslev-Simon work extends to JV-bodies, one might expect the proof
of Theorem 6.1 to extend to JV-body systems but we have run into a number of
technical difficulties, some of which we cannot solve :

A. Definition ofH(iπβ). Even for Coulomb potentials, it is not clear how to define
H(iπβ) as an operator sum. The problem is that the usual facts that C ^-bounded
implies C®/ is ,4(x)/ + /®£-bounded only holds in general if B and A are
bounded below. However, using form methods, we can make a reasonable
definition of H(iπβ).

B. HVZ for H(iπβ). Even for bounded potentials [when problem (A) is non-
existent], we have been unable to prove that σess(H(iπβ)) is where it should be. The
problem is that Ichinose's lemma σ(A®I + I®B) = σ(A) + σ(B) can fail for oper-
ators which only generate contraction semigroups (and not holomorphic semi-
groups). We note that even geometric methods of analyzing σess [11, 27, 10] rely on
an Ichinose lemma.

C. Stability at iπβ. Even if we knew about σess(H(iπβ)\ we do not see how to gain
sufficient control on (H(θ) — z)~l as θ-^iπ/3 to conclude continuity of P(θ).

In spite of these problems, it seems to us that it could be possible to extend the
proof. In attempting this, we were shocked at our ignorance of spectral properties
of generators of semigroups which fail to be holomorphic. Better understanding of
these could be the key to extending Theorem 6.1.

Appendix A. Borel Summability for Degenerate Eigenvalues

In this appendix, we want to explain how to prove the bound (4.4) on normal
eigenvalues. Our proof is patterned after the proof in [6] of the analogous result for
the Zeeman problem (this same proof also works for bounds on the coefficients in
the 1/R expansion of molecular physics [19]). We begin with the case where the
unperturbed eigenvalue is simple (or simple after restriction to a symmetry
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subspace) and then discuss the more complicated case where the unperturbed
eigenvalue is not simple but the degeneracy is removed to first order.

In either case one writes £(/) = F(f)/G(f). In the non-degenerate case

F(f) = E0G(f)+ § (φJWφo+fW-λΓ^dλ, (A.1)
μ-Eo|=e

G(f)= § (φ,(H0+fW-λΓ1φ)dλ (A.2)

with H0 = H(f = Q,θ,η) and W=Xeθ the electric field term, φ is the unperturbed
eigenvector. The formula E(f) = F(f)/G(f) is a standard result in perturbation
theory [23]. The perturbation series is obtained by expanding (H0 — fW— λ}~1 in
a series in / To prove (4.4) we must control the error separately in F and G. We
will prove the bound on the F the same method controls G. Thus, we will prove
that

μ-Eoi=ε ° °

We prove (A.3) for fixed (η,θ) in ^0 but it is easy to see that the estimates are
uniform over compacts ^tί in (η, θ) and hence (4.4) follows for / in sectors,

{|/| < Rδ - min(f, φ) + δ < arg/ < π + min(f, φ) - δ}.

(A.3) depends on the use of the scale of spaces ξ>a = {f\ea\x\feL2} with the

obvious norm. Since, for / small sup_ \\(H0 + fW— A)"1!! <oo by stability,

(A.3) requires that we show that

\\\_W(H0-λΓ1ΎΦ\\^C"+1n\. (A.4)

Fix a and view (H0 — λ)~1 as a map from ξ>ak/n to itself and W ΆSΆ map from ξ>ak/n

to ξ>a(k -1)/n. Then
n

j~ 1

where ||#||_yx is the norm of B as a map from §7.fl/7J to §vfl/n. Now

Also, by interpolation, the || \\jtj norm is bounded by the maximum of the || ||0 0

and the ξ>a to §fl norm. Thus since nn^n\Bn, and </>e§fl for a suitable (A.4) holds if
we show that for ε fixed and small:

μ_suιμJ(#0-λΓXβ<oo. (A.5)

(A.5) is an estimate of Combes and Thomas [9] similar to that we used in Sect. 5.
This describes the proof of (4.4) in the non-degenerate case. We describe the

extension to the case where degeneracy is removed to first order as a series of steps
(we take Qλ=I without loss of generality):

1. We begin with the standard method [18] of reduction to a non-degenerate
problem. Add a constant to W so that the eigenvalues of PQWPG ίP0 = (

-(2πO~1 I (H^-zΓ1

\z-E0\=ε
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are all non-zero. This will not affect the errors for n ̂  2. Define

H(f) = P(f) \H(f) - £0] P(f)/f = ff(0) + V(f).

Then #(0) = P0 WP0 has non-degenerate ^-independent spectrum away from 0
and, if the non-zero eigenvalues of H(f) are λv(f\ ...,λ^(f)\ then the eigenvalues of
H(f) near E0 are just E0+fλt(f).

2a. For some α>0, IKz-HCOΓ1!!^^ const uniformly in O^fc^α, fa,θ) in ̂
(̂  £ ̂ 0 and compact), |/| small and |z — E0| = ε for some ε > 0 which is as small as
desired. To prove this we use the stability argument of Sect. 3 for H(/,θ,α)
- e«'Ή(f, θ) e~«'r to obtain a bound on (z - HD(f, 0, α))~1 uniform in small |/|, fa, 0)
in ^15 |α| small and z near E0. Here D is a non-trivial cluster decomposition. The
argument in the proof of Theorem 4.1 using the Weinberg-van Winter equation
then leads to the desired result.

2b. For some α>0, \\(z — H(0))~l\\b>b^const uniformly in O^brgα, θ in
compacts of {θ:\Imθ\<φ} \z — /^| = 6 where μf are the eigenvalues of P0WP0

= H(0). This is easily seen from the relation (z-Ή(O)Γ1 =z~1(l-P0)
+ PQ(z-H(0)Γ1P0> the fact that \\(z-H(ΰ)}I'1!! is uniformly bounded for the
above z and the bound ||efl|r|P0|| ^ const uniformly in θ for the above θ.

2c. ||(z-HI/))'11| is uniformly bounded in /, θ, z for (θ,η) in ̂ 1? |/| small and
|z —μ | = ε with ε>0 and small. To see this we write

where P (/) is the spectral projection associated with H(f) for eigenvalue
defined by a contour integral. We have already seen that λί(/)->μί uniformly for /
in the relevant region. By an argument of Kato [18, p. 446] easily made uniform in

the surpressed variable θ, P.(/) > P.(0) where P^O) is the spectral projection

for eigenvalue μ. associated with H(0) = P0WPQ.

3. Using P(f) = (2πi) ~ 1 | (z - H(f)) ~ldzm the definition of H(f)9 and the
expansion |z-£0 |-ε

n
. ]_ -̂1 X JTJ >. _== 2-ί \z "o/

one can write m

n/)= Σ ^«j
«= i

where An is a sum of 0(n) integrals of products of (z — H0)~ l 5s and FΓs, each term
containing exactly n+ IWs while Rm+1 has 0(m) terms, each term with
but in addition to (z — HQ)~^s each term will contain some (z — H(f))~l9s.

The perturbation series is obtained writing λ; (/) as a ratio of

ίφj, f dz(z-H(f)Γ1zφJ\ to U, j ^z(z-H(/))-^A

where ^ is the eigenvector of P0WP0 of eigenvalue μ. (λj(f)-+μj) and then
expanding (z-H(f}Γl =(z~H(Q)- V(f))~1 to nih order in F(/) and collecting
terms of order ^ n in / As in the non-degenerate case, we need only prove the n!
bound on the remainder for numerator and denominator separately. The error is a
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sum of terms which we obtain as follows : In kth order in V(f) we have (H(0)
n-k+l

-zΓ\V(f) (H(O)-zΓ1)*. Write the first V(f) as £ Aef + Rn_k+2(f). The
term * ~ 1

goes into the error bin. In the term involving Ajfj we expand the second V(f) to
order n—j — k + 2 and throw

(H(0) - zΓ lAjfS(H(ΰ) - zΓ lRn-j-k+3(f) (H(0) - z

into the error bin, etc. In the error terms we now expand A and Rk as sums of
products of resolvents and Ws [V(f) can be considered as R1 in this procedure].
In the error resulting from truncating the geometric series for (z — H(f))~ *, namely

we use the bound

||(#ω-*ΓHnm#(0)-Jr^

which follows from (2c). Thus this error is of the same form as the ones already
considered. We estimate the total error by the product of the number of terms
times an upper bound on the size of any term.

4. Let us show that the total number of terms is 0(cn) for some c> 1. We first
consider the error from (H(Q)-zΓ1(V(f)(H(Q)-zΓί)k. From expanding the first
V(f) our error is schematically (leaving out all resolvents)

_ Γ) τ>k— 1
~Kn-k+2Kl

which has 0(n — k + 2)0(ck~ l ) :g 0(n + l)ck terms. From expanding the second V we
get an error of the form

which has on the order of ck Σ JιJ2 = ck Σ hh terms.

Continuing in this way we see that the error resulting from (fi(ϋ) — z)'1 (V(f) (H(Q)
— z)~l}k has at most Nk terms with

fn+ί \

Nk = Ck^Σ^l + + Σ Λ72+- + + Σ + Jl/2-ΛJ-

€

Now subject to Σ xt= ^ xi = ̂  xι -x<? attains its maximum with all x/s equal so

V - ί = \/ n + 1 Vr K f ^ v - 1 - v ,2^ j^...]^ -(number oί decompositions j1 + ...+j^ = n+ 1 with
7ι + . .+7V = « + l \ * I
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Adding all terms from fe= 1, ..., n and the geometric series truncation error terms
we have 0(cn) terms for some c> 1.

5. Each term that we must bound is an integral of a product of resolvents and
at most n + 2Ws and thus by the method used in the non-degenerate case is
bounded by cnn\\f\n+1 for some c.

This completes the sketch of the proof of (4.4) when the eigenvalue is
degenerate but degeneracy is removed to first order. Π

Appendix B. Essential Spectrum in the Ineffective Case

Our goal in this section is to identify the essential spectrum in case the charges and
masses are ineffective. We let 3 be the family of all decompositions D = {C1? . . ., Ck]
with Qί/Mi = Qj/Mj for all i,j, and fc> 1. Recall (Sect. 2) that ineffective charges and
masses are precisely those with 3 φ 0. We will prove :

Theorem B.I. Let

H(0)=- £ (2m^Af-
20+

ί

and let H(θ) be the corresponding operator with center of mass removed. Suppose all
V^eC™, the Combes class. Then for all θ with 0<|Imθ|<min(0,f), we have that

°ess(H(θ)) = U (μΛί + - + ft* + ̂ '2θ\λ ^ 0, μΛi E σ(HCί(θ))} . (B.2)
{d,...,Ck}e3

Given this result, one easily sees inductively that

Corollary B.2. Under the above conditions

= U ίμβl+ ... + μ«k + λe-2θ\λ^,μaieσdi&c(HCi(θ))}. (B.3)
{Cι,...,Ck}e3

The proof of this corollary depends on the observation that if D = {C1? . . ., CJ
is an ineffective decomposition and if D1 = {C11, ..., C l fc ι}, ... are ineffective
decompositions of C1? ..., then D1...Dk is an ineffective decomposition.

By the standard argument of Hunziker [38], the RHS of (B.3) is contained in
σ(H(θ)}, so again using induction, to prove Theorem B.I we need only show that
the RHS of (B.2) contains σess(H(θ)\

Henceforth we suppose that Argθe(0,π/3) so that Re(ΐe~3θ)>0.
Mainly we will require a strong form of Ichinose's Lemma. The following result

of Herbst [39] uses in part ideas of Gearhart [40].

Definition. The generator, A, of a strongly continuous semigroup e~tA (ί^O) on a
separable Hubert space, §, is said to have contained spectrum if and only if ||e~M||
«g etω for some ω an(J jf

(a) For all £, there is a yE so that

(b) sup
Rez<£
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The following follows from [40] :

Lemma B.3. // A has contained spectrum, then

for all ί>0.

Lemma B.4 [39]. Let Aί9 ...,Ak be operators with contained spectrum on Hubert
spaces £>1? ...,§fc. Let A be the operator on ί^®...®^ which generates the
semigroup e~tAί® ...®e~tAk so that formally

A = A^I®. ..® I + I®A2®. ..&!+... + 1®. ..

Then A has contained spectrum and

σ(A)=
i= 1

In addition to these results we will need the following result of Phragmen-Linde-
lof type whose proof is standard :

Lemma B.5. Let F(z) be an operator valued analytic function in a neighborhood of
S = {z|O^Rez^l, Imz^O}. // A= sup ||F(z)|| <oo and lim \\F(iy)\\=Q, then for

zeS y-*co
any Θ<1:

lim sup \\F(x + iy)\\=0.
y-+ oo 0 ^x^θ

Proof. Apply the maximum principle to the function

in the region O^Rez^l, ^Imz^ - to find that

sup \\Fx + iy\\^ce-ye + ce-- + e sup ||F(iα)|| .
O^x^θ a^y/2

Choosing B suitably the result follows.
Finally we need the following:

Lemma B.6. Let H0(θ) be the operator H(θ) when all Vtj = 0, let L0 = ie~θH(θ) and let
F1? ..., Vm be (not necessarily distinct), two body potentials so that

is compact (i.e., the Vs determine a connected diagram). Then for each £0,

lim | |FO>)||=0.
|y|->c»

Proof. By a limiting argument, it suffices to consider the case where each Vtj is in
CQ (as a function of η — r7 ). Then
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with
a(t t \-p-tiLoy p-tmL0y -(ίi + ... +ίw)E0ί/Ui? •••? lm)~v vι.. e yme

Now g is compact indeed it is Hubert-Schmidt as can be seen by using the
explicit integral kernel of e~tL°, so that g takes values in a separable space; clearly
g is measurable and since ||e~sL°|| ^Ce~Ds3, \\g\\ is in ZA Thus, by the Riemann-
Lebesgue lemma, ||F(y)||->0 as y-»oo. Π

Proof of Theorem B.ϊ. As usual let Lc(θ) = ie-ΘHc(θ\ L(θ) = ie-θH(θ) and LD(Θ)
= ie~θHD(θ). We will prove inductively that each Lc(θ) has contained spectrum
and that

σess(L(θ))g(jσ(LD(θ)). (B.4)
D

If D = {C1,...,CΛ}5 then

(B.5)

with σ(Z)-0 for effective D and σ(L) = {ίe~ 3Θ λ\λ^Q} if D is ineffective. Thus (B.4),
the result on contained spectrum which we will prove and Lemma B.4 complete
the proof of Theorem B.I.

We begin the induction by noting that in case N = 1, L(θ) is easily seen to have
contained spectrum. Thus suppose we know every Lc(θ) with C^{1, ...,N} has
contained spectrum. By (B.5) and Lemma (B.4) each LD(Θ) has contained spectrum,
so using the Weinberg-van Winter equation

(L(θ) -zΓ1=D(θ;z) + I(θ z) (L(θ) -zYl. (B.6)

we see that D and / are bounded as |Imz|-»cG with Rez bounded from above.
Expanding / in diagrams when Rez is very negative and using Lemma B.6, we see
that ||/(θ,z)||->0 as |Imz|-κχ) with Rez very negative. But then exploiting Lemma
B.5:

lim ||/(θ,z)||=0.

By the Weinberg-van Winter equation (B.5) we conclude that L(θ) has contained
spectrum.

(B.4) follows in the usual way from the Weinberg-van Winter equation if we
note that by inductively proving (B.2) we know that {z|Rez<£}\(J σ(LD(θ)) is
connected. Π \D

Appendix C. Some Estimates

The object of this appendix is to prove certain estimates which one of us has used
elsewhere [28].

Theorem C.I. Let h0 = — A+fxv />0. Then ifχ[0 ^ is the characteristic function
o/[0,oo)

XlX[0,oo)(*l) (^0-^)^1^

are bounded operators for zφσ(h0).
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Proof of Theorem C.I. By first making a scale transformation we see that / can be
set equal to 1 without loss of generality. Let p. = — idj9 p2= —A and let θ be a non-
negative function in C°°(1R) with θ(x) = l if x^l, θ(x) = 0 if x^O. Let A = θ(x1)
(p2 + x1) with domain C$. We compute

A* A =P

2θ2p2 + X2

ίθ
2 + xίθ

2p2+p2θ2x1

Since [p1,[p1,x10
2]] = - -^(x^2)^ -c we have for

)pJψ||2. (C.I)
J

Using the fact that C^ is acorefor p2 + x1 and that for ImzφO, A(p2 + x1 — z)"1 is
bounded we conclude from (C.I) that Θ(xί)p2(h0 — z)~1, x^xj (h0 — z)"1 and

yrx^θ(x1)pj(hQ — z)~1 are bounded. Translating x1 by 1 we see that the above
operators are bounded when xί is replaced by x1 + ί and θ(xί) by Θ(x1 + l).
Multiplying by ^oo^i) fr°m ^e left leads to the desired result. Π
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