ASYMPTOTIC PROPERTIES OF THE VECTOR CARLESON EMBEDDING THEOREM

MICHAEL GOLDBERG

ABSTRACT. The dyadic Carleson embedding operator acting on C^n -valued functions has norm at least $C \log n$. Thus the Carlesson Embedding Theorem fails for Hilbert space valued functions.

Let T be the unit cirle in C, and $\{I\}_{I \in D}$ its collection of dyadic arcs. Let w_I be nonnegative real numbers indexed by $I \in D$. For integrable functions f on T, denote by $\langle f \rangle_I$ the average $|I|^{-1} \int_I f(y) dy$. The classical Carleson embedding theorem [1] is equivalent to the following dyadic result:

Theorem 0. If $\sum_{I \subset K} w_I \leq |K|$ for all $K \in D$, then $\sum_{I \in D} w_I \langle f \rangle_I^2 \leq C ||f||^2$ for all $f \in L^2(\mathbb{T})$.

The converse is also true (up to the placement of constants) and is verified by considering functions of the form $f = \chi_J, J \in D$.

An analogous statement may be made for functions taking values in \mathbb{C}^n with matrix-valued weights $W_I \geq 0$ in the sense of quadratic forms. We wish to consider the following *n*-dimensional embedding theorem:

Proposition. If $\left\|\sum_{I \subset K} W_I\right\| \leq |K|$ for all $K \in D$, then $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \leq C_n \|f\|^2$ for all $f \in L^2(\mathbb{T}; \mathbb{C}^n)$.

The space \mathbb{C}^n here is viewed as a finite-dimensional Hilbert space. One might ask whether a similar result still holds when f takes values in a general Hilbert space H and W_I are positive selfadjoint operators. This is answered in the negative by [4], which proves that C_n must be bounded from below by $c \log n$. In the current paper we will use the construction in [4] to verify the stronger bound $C_n \geq c(\log n)^2$, which is also proved in [5]. A precise statement is as follows:

Theorem 1. There exist a function $f \in L^2(\mathbb{T}; \mathbb{C}^n)$ and matrix weights $W_I \ge 0$ such that $\left\|\sum_{I \subset K} W_I\right\| \le |K|$ and $\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) \ge c(\log n)^2 \|f\|^2$, where c > 0 is independent of n.

Remarks. The example presented here is due to Nazarov, Treil, and Volberg [4]. It is further shown in [3] and [4] that the best possible C_n is bounded above by $C(\log n)^2$, making these results sharp up to a constant factor.

Proof of Theorem 1. Let $\mathbf{e}_0, \mathbf{e}_1, \ldots, \mathbf{e}_n$ be the standard basis for \mathbb{C}^{n+1} . Define the Rademacher functions $r_j(e^{2\pi i t}) = (-1)^{\lfloor 2^j t \rfloor}$. For a dyadic interval $I, |I| \leq 2^{-j}, r_j$ is seen to be constant along I. Its value throughout the interval will be called $r_j(I)$.

Date: May 9, 2000.

MICHAEL GOLDBERG

Let $f(x) = \sum_{j=0}^{n} r_j(x) \mathbf{e}_j$. Clearly $||f||^2 = n + 1$. The averages of f over dyadic intervals are also easy to compute. When $|I| = 2^{-i}, i \leq n, \langle f \rangle_I = \sum_{j=0}^{i} r_j(I) \mathbf{e}_j$.

Let $W_I, |I| \ge 2^{-n}$ be the rank-one operator satisfying $W_I \mathbf{v} = |\overline{I}|(\mathbf{v}, \phi_I)\phi_I$, where $\phi_I = \sum_{j=0}^{i} \frac{1}{i+1-j} r_j(I) \mathbf{e}_j$. Define ϕ_I to be 0 when $|I| < 2^{-n}$. Already we can estimate the sum

$$\sum_{I \in D} (W_I \langle f \rangle_I, \langle f \rangle_I) = \sum_{I \in D} |I| (\langle f \rangle_I, \phi_I)^2 = \sum_{i=0}^n \left(\sum_{j=0}^i \frac{1}{i+1-j} \right)^2 \ge cn (\log n)^2$$

The only task remaining is to show that $\|\sum_{I \subset K} W_I\|$ is controlled by |K|. We will prove the estimate $\sum_{I \subset K} (W_I \mathbf{v}, \mathbf{v}) = \sum_{I \subset K} |I| (\mathbf{v}, \phi_I)^2 \leq C |K| |\mathbf{v}|^2$ for all $\mathbf{v} \in \mathbb{C}^{n+1}$. For each interval I with $|I| = 2^{-i}$, split the vector ϕ_I into the sum of two parts,

For each interval I with $|I| = 2^{-i}$, split the vector ϕ_I into the sum of two parts, $\phi_I = \sum_{j=0}^k \frac{1}{i+1-j} r_j(K) \mathbf{e}_j + \sum_{j=k+1}^i \frac{1}{i+1-j} r_j(I) \mathbf{e}_j$. Denote the first sum, which depends only on the length of $I \subset K$, by \mathbf{g}_i . Summing over all I with $|I| = 2^{-i}$, and exploiting the orthogonality of the Rademacher functions,

$$\sum_{\substack{I \subset K\\I|=2^{-i}}} |I|(\mathbf{v},\phi_I)^2 = |K| \left((\mathbf{v},\mathbf{g}_i)^2 + \sum_{j=k+1}^i \frac{1}{(i+1-j)^2} |v_j|^2 \right)$$

Thus $\sum_{I \subset K} (W_I \mathbf{v}, \mathbf{v}) = |K| \left(\sum_{i=k}^n (\mathbf{v},\mathbf{g}_i)^2 + \sum_{j=k+1}^n |v_j|^2 \sum_{i=j}^n \frac{1}{(i+1-j)^2} \right)$

The second sum is less than $C|K|\sum_{j=0}^{n}|v_{j}|^{2} = C|K||\mathbf{v}|^{2}$. To estimate the first sum, let **G** represent the $(n - k + 1) \times (k + 1)$ matrix whose ij^{th} entry is the coefficient of \mathbf{e}_{j-1} in \mathbf{g}_{i+k-1} . Then $\sum_{i=k}^{n} (\mathbf{v}, \mathbf{g}_{i})^{2} \leq ||\mathbf{G}||^{2} |\mathbf{v}|^{2}$. Here $||\mathbf{G}||$ is taken as an operator from \mathbb{C}^{k+1} to \mathbb{C}^{n-k+1} . Under a suitable permutation of indices, however, **G** is seen to be a restriction of the Hilbert matrix $\mathbf{A}, (\mathbf{A}_{ij} = \frac{1}{i+j-1})\Big|_{i,j=1}^{\infty}$ to finite-dimensional subspaces. It is well known [2] that **A** is bounded from $\ell^{2}(\mathbf{N})$ to itself. Thus the first sum is less than $|K| ||\mathbf{A}||^{2} |\mathbf{v}|^{2} = C|K| |\mathbf{v}|^{2}$. Dividing all weights W_{I} by an appropriate constant proves the theorem.

References

- [1] J.B. Garnett, Bounded Analytic Functions, Acad. Press, New York, 1981
- [2] G. H. Hardy, J. E. Littlewood, and G. Polya, *Inequalities*, University Press, Cambridge, 1934.
- [3] Nets Hawk Katz. Matrix valued paraproducts, J. Fourier Anal. Appl. 300 (1997), pp. 913-921.
- [4] F. Nazarov, S. Treil, and A. Volberg, Counterexample to the infinite dimensional Carleson embedding theorem, C.R. Acad. Sci. Paris Sér. I Math., 325 (1997), No.4, pp.383-388.
- [5] F. Nazarov, G. Pisier, S. Treil, and A. Volberg, *Sharp estimates in the vector Carleson imbedding theorem and for vector paraproducts*, Preprint.

AMS subject Classification: 42B20, 42A50

Keywords: Carleson embedding theorem, vector valued functions, operator valued measures, weights.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CA 94720-3840 *E-mail address*: mikeg@math.berkeley.edu